AD-A140 821 THE DESIGN AND IMPLEMENTATION OF AN ONLINE DIRECTORY 1/2'
ASSISTANCE SYSTEM{U) MASSACHUSETTS INST OF TECH
CAMBRIDGE LAB FOR COMPUTER SCIENCE. K KOILE DEC 83
UNCLASSIFIED MIT/LCS/TR-313 N00014-75-C-0661

- -

13333
umuuu.wn. k

EEE
=il =M <
= = =

I

MICROCOPY RESOLUTION TEST CHART
FNONAL BUREAU OF STANDARDS-1963-A

[ABORATORY FOR v VEASSACHUSE TS

STOCT NS T O
COMPUTER SCIENCE 17 oo

\

AD-A140 821

T DESIGN AND
INIPLENMENTATTION OF AN
ONLINE DIRECTORY
ASSISTANCE SYSTEN

DTIC

ELECTE
MAY4 1084

OTIC FILE COPY

M.*_ e

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)
REPORT DOCUMENTATION PAGE BRI T O st
[T, REPORT NUMBER 3 RECIPIENT'S CATALOG NUMBER
MIT/LCS/TR-313 '

4. TITLE (and Subtitte) 5. TYPR OF REPORT & PENIOD COVERED

*] The Design and Implementation of an M.S. Thesis /
- Online Directory Assistance System o PERPONMING ORG. REDORT IMBEN

MIT/LCS/TR-313

: } - - [aovnokin - RACY OR GRANT NUNBER(s)
i g DARPA/DOD g
Koile, Kimberle N00014-75-C-0661

. PERPORMING ORGANIZATION NAME AND ADDRESS . P RAM ELEMENT. PROJECT, TASK

MIT Laboratory for Computer Science AREA S WORK UNIT NuNBews
: 3 545 Technology Square
o " Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
DARPA/DOD : MMareir—t——iS0d /
1400 wilson Boulevard 5. NUMBER OF PAGES
Arlin%tonE VA 22209 106
. MONITORING AGEN NAM ADDRESS(I! ditforant from Controlling Otfice) 18. SECURITY CLASS. (of this repert)
. ONR/Department of the Navy Unclassified
E Information Systems Program e GECy AIFICATION GOWGRADING |
= Arlington, VA 22217 NEGULE TN DOTHORAOIN
{ 5 76, DISTRIBUTION STATEMENT (of s ReporD

Approved for Public Release, distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abetract enteced in Block 20, If different frem Repert)

R

. B ‘
bt a o o Brao

Unlimited

R ———————— ——
18. SUPPLEMENTARY NOTES

e

u

1. KLY WORDS (Continue on reverse side If nessscary and identily by bleck number)

directory assistance, name server, user interface

0. ABSTRACT (Continue on reverse side If nececsary and identily by bleosh aumber)

This thesis describes the design and implementation of an on-
line directory assistance system called DIRSYS that was modeled
after the white pages of a paper telephone book and a full-screen
display editor such as Emacs. As the user begins typing a name,
the "pages” of this electronic telephone book appear on the screen
and the ontr{ that most closely matches what the user has t 80
far is highlighted. The system provides a tutorial for novice

ﬂb'lﬂfkylﬂ! I?ﬂblﬂlllﬂﬂlﬂ'llmﬂn ac) 154ad

——— i e

20. mtimoa.

] nsersandanonlimhclpfwﬂi;yfamvimuuuuemr-
1 . ienced users. The mystem also pyrovides:-a facility for keeping
~ the information in the database up-to-date. A preliminary

E . Qvaluation of DIRSYS indicates that the system can be used easily
i‘ ',ﬁyhﬁwwm“periwmtermrsmdthnt. ‘
' euleept for its ciow performance, DIRSYS is usable and robust.]

»

R g A

ety e g S ieees o <t s

:\:ﬂvﬂ o Ve
e P
r—

e

144t
i Yl
’
.

.
57

) —- N ‘
ok = §
) . :
4 - : A
¥ i N
4
s i
"' Vowide e v 3 - f
'

o
»
= b
—r—crery

e} aea

The Design and Implementation
of an Onlvine Directory Assistance System

Kimberle Koile

December 1983

© Massachusetts Institute of Technology 1983

This research was supported by the Advancerd Research Projects Agency of the
Department of Defense and was monitored by the Office of Naval Ressarch under
contract number NOOO14-75-C-0861.

Massachusetts institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetis 02139

} -

/a,,

| The Design and Impiementation
of an Online Directory Assistance System

by
Kimberie Koile

; ' Submitted to the

: Department of Electrical Engineering and Computer Science

; on December 20, 1983 in partial fulfillment of the requirements
for the Degree of Master of Science

Abstract

"~ This thesis describes the design and implementation of an online directory
assistance system called DIRSYS that was modeled after the white pages of a paper
telephone book and a full-screen display editor such as Emacs. As the user begins

] typing a name, the “pages™ of this electronic telephone book appear on the screen,

= 3 and the entry that most closely matches what the user has typed so far is hightighted.

N | The system provides a tutorial for novice users and an online help facility for novices

;L d as well as experienced users. The system also provides a facility for keeping the

: information in the database up-to-date. A preliminary evaluation of DIRSYS indicates
that the system can be used easily by both inexperienced and experienced computer
users and that, except for its siow performance, DIRSYS is usable and robust.

) N
B L o
e ? P BUBNON

e Y

Keywords: directory assistance, name server, user interface.

iy gt

S
Ry

1 . - Accession For

WTIS GRARI

5 DPTIC TAB 0O

Unannounoed o
t

=Y

Codl

pistritution/
Availability Cedes
end/or

g e sl
PO N R e o B

Acknowledgments

| would like to thank my thesis advisor, Prof. Jerry Saltzer, for his advice and
encouragement throughout this research and his diligence in reading the drafts of
my thesis. | also would like to thank Prof. Tom Malone for reading a draft of my thesis
and making valuable comments about it.

| would like to thank Sam Hsu for his invaluabie help in designing and implementing
this system and in Clarifying the ideas in this thesis. | also would like to thank
Deborah Estrin and Karen Sollins for their helpful suggestions. Thanks go to Sam,
Deborah, and Karen for helping make my stay at M.I.T. an enjoyable one.

In addition, | would like to thank the other members of the Computer Systems and
Communications Group and the Computer Systems Research Group for their
comments and suggestions about my work. In particular, Larry Allen and Michael
Greenwald have heiped me learn about UNIX and VAXes. Also, thanks go to David
Feidmeier for help with the Altos.

| also would like to thank those people, too numerous to list, who provided me with
the needed directory information, as well as those who helped critique the system.

Special thanks go to my parents, Carmon and Earl, for their continued confidence
and support. Thanks also go to my father for his valuable editing comments.

Finally, special thanks go to my husband, John, for his never-ending patience and
support. | aleo am grateful to him for making many heipful editing suggestions and
doing the graphs for this theels.

Table of Contents
' Chapter One: Introduction 6
1.1 System Goals 7
1.2 Related Work 8
1.3 Thesis Organization 18
Chapter Two: Operational and Design issues 19
2.1 Operational Issues 19 J i
2.2 Design Issues 23 4
Chapter Three: The System 27
3.1 The Interface 27
3.1.1 Design Principles 7
3.1.2 What the Interface Looks Like 31
3.1.3 Features that lllustrate Design Principles 49]
3.2 The Database 52
3.2.1 Database and Index Structures 52
3.2.2 Searching the Database 53
3.3 The Update File 56
3.3.1 Update File Structure 56
3.3.2 Adding Updates to the Database 57
‘ : Chapter Four: Preliminary Evaluation 63
4.1 User Interface 63
) 4.2 Database Access Method
: , Chapter Five: Conclusions and Future Work 74
o 5.1 Conclusions 74
= 8.2 Future Work %
- 8.2.1 Work on the Current System 76
5.2.2 Extensions to the Current System 78
: Appendix A: Glossary of Terms , 8s
Appendix B: Performance Graphs , . 90
BibNegraphy , 101

+
UGS | SN A

cee e
S N PP

Table of Figures

Figure 1-1: Key Arrangement on a Dvorak Keyboard
Figure 3-1: Herald Screen

Figure 3-2: Sample Search Screen

Figure 3-3: Sample Search Screen in Expanded Format
Figure 3-4: Sample Tutorial Screen

Figure 3-5: Sample First Level Help Window

Figure 3-6: Sample Second Level Help Window

Figure 3-7: Sample Update Request Window

Figure 3-8: Sample Update Request Window Showing Proposed Chances

Figure 3-9: Sample Update Survey Window

Figure 3-10: Sample Update Survey Window in Expanded Format

Figure 3-11: Sample Update Edit Window

Figure 3-12: Sample Database and Indexes

Figure 3-13: Sample Update Record

Figure 3-14: Sample Update File and Database Before Daemon Rung

Figure 3-15: New Update File and Database After Daemon Runs

Figure 4-1: Disk Accesses vs. Record Block Size, Buffer Size 128

Figure 4-2: Central Processor Time vs. Record Block Size, Buffer Size
128

Figure 5-1: Sample Search Screen for Mouse Interface

Figure B-1: Disk Accesses vs. Record Block Size, Buffer Size 128

Figure B-2: Disk Accesses vs. Record Block Size, Buffer Size 256

Figure B-3: Disk Accesses vs. Record Block Size, Buffer Size 512

Figure B-4: Disk Accesses vs. Record Block Size, Buffer Size 1024

Figure B-5: Disk Accesses vs. Record Block Size, Buffer Size 2048

Figure B-6: Central Processor Time vs. Record Block Size, Buffer Size
128

Figure B-7: Central Processor Time vs. Record Block Size, Buffer Size
256

Figure B-8: Central Processor Time vs. Record Block Size, Buffer Size
512

Figure B-9: Central Processor Time vs. Record Biock Size, Buffer Size
1024

Figure B-10: Central Processor Time vs. Record Block Size, Buffer Size
2048

8 8 9 BRRBR2B dANR2LP5:5863888888o

§

R AR 1»:“,‘L .-

Chapter One

Introduction

DIRSYS' is an online directory assistance system. It was developed for users with
widely varying computer skills and is based upon the familiar concepts of a paper
phone book and a full-screen display editor such as Emacs [51]). Entries from the
directory are displayed on the screen in a compact format, one line per entry, and the.
current entry of interest is highlighted, e.g., by displaying the line in reverse video.
The user may direct the system to emphasize another entry by issuing commands,
similar to Emacs’ cursor motion commands, or by typing a name. The search
mechanism is incremental. That is, after each character typed by the user, DIRSYS
updates its highlight and the terminal screen, if necessary, such that the highlight
rests on the entry whose name string most ciosely matches what the user has typed
so far. A help facility is provided to guide the novice user and to remind the
experienced user which commands are available. A tutorial is also available for users
who want step-by-step instruction on how to use DIRSYS. The defauit search screen
allows approximately a full screen's worth of entries to be displayed, each entry
occupying one line of the terminal screen. All information concerning a particular
entry cannot be seen using this compact format. The user may request DIRSYS to
display fewer entries on the screen and show each entry in detaill. A command is
available to switch between these two display formats. All commands retain their
semantics regardiess of the display format.

DIRSYS also provides a facility for keeping the information in the directory database
upto-date. A user may submit update requests, which oontain proposed
modifications to that user's database entry. The manager validates or invalidates

T 7ve name is dertved from Difteciory SYSm.

these requests, e.g., via letters to the users, and marks the valid update requests. !
!
DIRSYS then rebuilds the database to include the valid updates. i

1.1 System Goals I

DIRSYS was designed and implemented in order to make the task of looking up M.I.T. ‘:
~ phone book information easier than with the current methods.2 The primary goal for |
| DIRSYS was to develop a system that could serve multiple classes of users '

-- inexperienced, experienced, and users in between who have mastered the system
once but are not experienced at using it. Thus, the system needed to be easy to leamn |

i so that people unfamiliar with use of computers or use of the system could engage

the system and "look someone up” in the electronic phone book. The system aiso)
needed to be easy to use once learned so that experienced computer users and ’
5 ‘ experienced DIRSYS users could look up information easily and quickly. The

3 challenge in designing DIRSYS was to combine the simplicity and verbosity needed

' for ease of learning with the flexibility and conciseness needed for ease of use. 'y

Mnmmummmm
bouks or oniing direciery Systewms (Nt GORtEIn information 1of WBire of Coriain COMpUISr Qualame.

;g | In addition, it was desired (1) that the retrieval of information from the database be
&t fast -- at least fast enough to keep up with the demands of the users, (2) that the
Bt database access method, le., the database structure and database search
il mechanism, be simple, and (3) that the access time for each database search, Le., ,;
11 the time to search the database and retrieve the desired record, fall within a narrow }
1. range of values in order for the system response times o be relatively constant. '
. Another gosl was 10 have a relatively simple update mechanism that would aliow
2 changes 10 be made 10 the directory database easily and quickly without degrading
t. Sy pertoomance
{
3 !
|

“

7

1.2 Related Work

The following survey of online directory assistance systems is not an exhaustive
survey, but rather a representative one. The systems outlined here range from small
systems to very large systems, and most of them function only as directory assistance
systems. One of the systems described here provides other services as well.
Systems such as Xerox’s Clearinghouse [40] and Grapevine [5] are designed to aid
computers in locating objects in a distributed multinetwork environment. Since they
do not provide the kind of directory assistance service for individuals that DIRSYS
provides, they are not included in this survey.

French PTT Directory System

For the past several years, the French phone company (PTT) has been developing an
online directory assistance system that is available to subscribers via terminals
placed in their homes and offices and in post offices and selected public places [20).
This electronic telephone directory contains information found in the “white™ and
"yellow" pages of a printed telephone book. Users can search the directory for
information by name, profession, or phone number, and can look up billing and
telephone company information.

To search for information associated with a personal name or business name, the
user types In a location name, where location may be a township, an urban precinct
or district, a county, or a rural crossroads site, and the personal or business name,
He® may also enter an address or the name of a profession, e.g., banking. The
system uses this additional information to identify the desired entry when more than
one matching entry is found. To search the "yellow” pages, the user inputs a
location name and a qualifier that describes the information he is seeking, e.9.,
restaurant. if a8 matching entry is not found for the specified location, the program

W,EWMMM.MmembMMMNM
Since forms such as "s/he” are not considered to be grammatically correct, "he” is used in this
document o mean “he or she”.

ORI S b g 771

will search the information associated with neighboring areas. Finally, to search for
an entry associated with a given telephone number, the user types in the eight digit
national telephone number.

Directory assistance operators perform two functions within this system. They assist
customers who are unable to locate a desired entry using the electronic directory
system, and they update information contained in the directory database.

The online directory system is currently operating throughout the western part of
France, with terminals available to any subscriber who wants one. In addition, plans
are underway to introduce the system throughout the rest of the country.

New England Bell Directory System

The New England Bell Telephone Company's online directory assistance system was
designed to be easily and qﬁickly used by trained operators.‘ It is used to service
requests for information contained in the "white pages" of phone books,"’ and
employs a special keyboard, called a Dvorak keyboard, on which keys are located
according to frequency of use, with the most frequently used keys in the middie row.
This keyboard is used for quick input of query information. (See Figure 1-1.)

Figure 1-1: Key Arrangement on a Dvorak Keyboard

4Coneequently, the system has no onfine heip facility.
5Themcurromlyisnointoractivasystemforloudngup“yaﬂmnptoou"nquﬂs.

- ¢
[T WPV

oo 5 IR, O

e

Ay SN B SN e 2T

s g gt E e

S

To search for a phone book entry, an operator types in a two or three letter locality
abbreviation, e.g., ARL for Arlington, a partition abbreviation, e.g., W for West
Suburban Boston, three or four letters of a last name, one letter of a first name, and
then hits a residential, business, or government key to indicate which type of phone
book entry is being sought. The operators move the cursor between different input
fields by using a <TAB> key. The entries that contain the typed characters in the
appropriate fields are displayed in the format that is used in the paper phone books:
one line per entry, last name followed by first and middle names or initials, street
address, city abbreviation, and phone number. The system also provides facilities for
locating entries containing similar, but differently spelled last names and names that
phonetically match the query name® The area code operators, reached by dialing
617-555-1212, typically service approximately 200,000 calls a day; the Boston area
operators, reached by dialing 411, typically service approximately 260,000 calls a
day.

The database for the 617 area code contains approximately 2.5 million entries and is
partitioned into four sections; the database for the Boston area contains
approximately 1.5 million entries and is partitioned into 16 sections.” Updates to the
directory database are initiated by the customer, who calls a service representative to
request a change. Once received, the updates are entered into an update file that is
separate from the database. The database is rebuilt every night to include new
update information.8 Thus, updates are visible as soon as they are received without
changing the database that is in use.

e’Thea additional search facilities are used rarely by the directory assistance operators.

7Pat Martin, New England Beil Telephone Company, personal communication.

8Thovomlc:rin¢=hmwofmaimaming the system delivers a magnetic tape containing the new
database each morning.

CSNET Name Server

CSNET? is a computer communications network linking groups in the United States
doing computer science research, such as university computer science departments.
It provides, or will provide, electronic mail, file transfer, and remote login services to
computers that are directly connected to CSNET and electronic mail services for
computers not directly connected to CSNET. The CSNET Name Server, which
provides a directory assistance service for CSNET users, was designed to be easy to
use and to facilitate the sending of electronic mail by helping users locate addresses
of mail recipients. In later stages, it will ailso help the user establish nicknames and
aliases for mail recipients and forward electronic mail [27, 48].

The Name Server database currently contains about 2000 entries and is maintained,
along with the programs for accessing it, on a central computer.'© In addition, a
Name Server program for registering users and answering questions about existing
CSNET sites resides on computers at local sites. If the local computer is directly
connected to CSNET, users invoke the directory service by connecting to the central
computer and typing "ns”. There are two levels of help available. The first level
contains a list of commands and their functions, and the second level contains a
more detailed explanation of a specified command.

To search the directory, a user types "whois" followed by a string of characters and
optional keywords. For example, a user might type "whois James [Texas
professor]”, and the program would search the database for a record containing the
string "James” and either of the keywords “Texas" or "professor”. The program
searches all fields in the directory records for a matching string. Records would be

'm.mbmmcommmm

'%mmmmmmmmumumun
Beranek and Newman Inc., located in Cambridge, MA.

1"

located that contain “James" as a first name, last name, login name'!, or street
name, for example. The keywords are important for distinguishing between the
records containing the same string. Typing an "*" in a string tells the program to
match any character or characters in that position in the string. In this way the
program can locate entries in the database when users do not know exactly how to
spell the name for which they are searching. If there are fewer than nine entries
matching what the user has typed, all information in them matching entries is
displayed. Otherwise, only names and electronic mail addresses are displayed.
There is also an option that allows users to specify this “short” format in place of the
longer one.

It the local computer is not directly connected to CSNET, users may interact with the
local Name Server program to formulate the "whois” queries. The program then
sends the queries via electronic mail to the central Name Server computer, which
performs the search and returns the matching information to the user via electronic
mail.

Usefs are responsible for entering and updating their entries in the central directory
database. The local Name Server program allows users to REGISTER, RETRIEVE,
EDIT, INSTALL and UNREGISTER their directory information. The program formats
an update measage and sends it to the central Name Server computer. The new
information is added to the directory database by an update program that runs every
15 minutes. Users may provide the Name Server program a password to be used
when modifying or deleting their directory entry. Having a password for the entry
allows a user to edit that entry when connected to the central Name Server, thus
saving him from having to always interact with the local Name Server program.

“mm'lumm'hmmmw'mo'. “COMPUIST a000UNM", Or “slecironic
mall ackivess”.

12

B - .-
o v b s Al -~ k]

PRV . WEPIEI S,

NICNAME

NICNAME is a directory service for users of ARPANET'2, a computer
communications network that kinks institutions throughout the United States, Norway,
and England. NICNAME is maintained by the Network Information Center (NIC) and
is invoked by connecting to the NIC computer and typing “whois" followed a string of
characters [21]. ¥ the string only contains an “*", an explanation about how to
search for a name is displayed. Any other string of characters is interpreted as either
a personal name or a handie, the unique identifier assigned to each entry in the
direciory databese.'3 Typing "..." after a string of characters telis the program to find
entries containing names or handies that begin with the typed characters, i.e., tolis
the program 10 use a prefix match rather than an exact match. Typing "." in front of
a string of characters tells the program 10 ssarch for matching names only; typing *1”
in front of a string of characters tells the program to search for matching handies
only, typing nothing before the siring of characters tells the program to search for
maiching names and maiching handiss.

¥ only one maiching entry is found, all of the informetion contained in the entry is
displayed and usually occupies soveral ines on the screen. N ssveral matching
ontriss are found, only the names, handiss, elecironic maill sddresses, and phone
numbers in the entries are displayed, with the information for each entry occupying
one ine On the screen. ¥ more than five matching eniriss are found, the first five are
diaplayed on the screen, followed by the message, "There are ¥ more entriss. Show
them? [Confirm]”, where x is an integer. Milling & carviage retum or enter ey
causes the remaining matching entries 10 be diaplayed. To view mare information for
an entry that was displayed in the one Ine per eniry format, the wasr repesis the
search, typing e c 1. -f the name or handie 10 uniquely ideniily the desired entry.

2170 name is deriveu i1 ui.1 A-ivanced Ressarch Prajscts Agenay NETwank.

"Se hanie often coneisis of the intials of She peesns AamD I Bie ey or e Iiliahs and an
intager when Bhe initials are not unigus.

___’_&;AA .L;jAr_ ;

The connection to the NICNAME program is closed as soon as display of the
maiching entries or a message indicating the lack of matching entries is completed.

The NICNAME directory database contains about 10,000 entries. Individuals are
responsibie for entering and updating their own entries. To add, delete, or modify an
entry, an individual sends a message containing the desired update via electronic
mail to NIC@SRI-NIC. One of several individuals in charge of maintaining the
NICNAME database enters the new information into the database using an update
program that then rebuilds only the part of the database that was affected by the
update.

PHONE

PHONE is a directory system that was designed for use within IBM. By typing
"PHONE" followed by a string of characters, users can "look up” information about
IBM employees who work at any of approximately 100 sites across the United States.
An explanation about how to use the system is available by typing "PHONE ?7".

The online phone book information at each site is organized into directories, with one
directory for each IBM site, and users may specify in which of these directories they
would like to search. Users also may specify that their private nickname files be
searched. If a directory or nickname file is not specified, the directory for the local
site is searched. Users may search for personal names, phone numbers, or
computer login names. Typing "°*" anywhere in the search string tells the program to
match any character or characters in that position in the string. A blank is used to
separate last name, first name, and middie name information in the search string. if a
comma is typed after one of the parts of the name, the program searches for entries
containing the string in the appropriate field exactly as typed. Otherwise, the
program searches for entries containing a string in the appropriate field that begins
with the typed characters. In other words, a comma is used to designate an exact
match scheme instead of a prefix match schems.

14

r

’
P S

e me

PUDEE L PRI D

Entries matching the user's search string are displayed by screenfuls in a one line
per entry format when possible. To display the next screenful of entries, the user
issues a MORE command.'4

Each IBM site is responsible for maintaining information about its employees. When
the information at a site is updated, an individual at the site sends a new copy of the
information file to the IBM site at Yorktown Heights, New York, where it is changed to
the PHONE directory database format and then sent out to all the IBM sites. Thus,
each site providing the PHONE service has a copy of the entire directory database,
which contains approximately 27,000 entries. 5

INQUIR

INQUIR is a directory service for M.I.T. computer users. It runs on several of the
M.L.T. computers and provides information about individuals who have accounts on
those computers. The directory service is invoked by typing "whois™ followed by a
string of characters. Entries in the directory database that contain a last name or a
login name matching the typed string are displayed on the terminal screen, with each
entry occupying several lines of the screen. The connection to the directory
database is closed as soon as the display of matching entries or a statement
indicating that there are no matching entries is completed. Thus, there is no need to

exit the directory system.

individuals with accounts on the computers that maintain an INQUIR directory
database are responsible for entering and updating their own directory entries. To
facilitate this process, access to the directory database is unrestricted. The
commands for entering directory information are easy t0 use. An individual types
“INQUIR" followed by a carriage return, then types one of several avallable

1\.10w the commend is lssued is operating system dependent.
18pgt0r Capek, IBM Yorkiown Heights, personal communication.

18

P ORI e T

OB ooy e

commands followed by a login name. The available commands are: NEW for creating
a new entry, MODIFY for changing an entry, SHOW for displaying an entry, and EXIT
for exiting the program. After typing NEW or MODIFY, one may enter such
information as name, nickname, project, home address and phone, work address and
phone, and birthday. Typing a question mark at any time causes a list of current
options to be displayed.

In one version of INQUIR, the directory database contains entries only for individuals
who have accounts on the machine providing the directory service. One such
INQUIR database contains approximately 500 entries. Updates submitted to this
INQUIR system are immediately added to the directory database and, thus, are
immediately visible. In a second version of INQUIR, the directory database contains
entries for individuals who have accounts on any of several machines. Each machine
provides the INQUIR directory service and has a copy of the directory database,
which contains approximately 2000 entries. Updates submitted to any of the
machines running this version of INQUIR are mailed to the other machines running
this version in order that all the databases contain the same information. Update
programs on each machine then create new copies of the database. Thus, updates
submitted to this INQUIR system are not immediately visible.

Bell Laboratories Experimental System

An experimental directory assistance system at Bell Laboratories in Hoimdel, New
Jersey, was designed to give feedback about the number of records in the database
that match what the user has typed 8o far. The scheme used to match records is a
phonetic matching scheme similar to the Soundex'® aigorithm. The user enters
information such as personal name, department, building addreas, or phone number,
and after each character typed, the system reports by means of a superimposed
coding scheme the maximum number of database entries that match what has been

“N‘l, Margaret K. and Rugeell, Robert C. U.S. Patents 1261167 (1018), 1436008 (1920). Ched by

16

e My e

* ’
- N VP RUNUDURYv X R -

K VA

typed 80 far [45]. The user can tell the system to "print” the entries on the acresn by
typing "p", output them to a file by typing "0", or count the actual number of
matching records by typing "c”. The system “remembers” the previous query 80
that queries can be combined by means of "AND" and "OR" operations. The
database contains about 27,000 entries and currently is updated manually by editing
the database file. The system is not widely used because it is not easily accessed:
users must locate a terminal, log into one of the Bell computers, and start up the
directory system. In addition, the database often contains out-of-date information.'”

Comparison to DIRSYS

DIRSYS, like many of the surveyed directory systems, was designed to be used by
individuals with widely varying computer skills and leveis of experience in using the
directory system. Uniike most of the surveyed systems, however, DIRSYS provides a
tutorial and a detailed level of help in addition to the brief description of the available
commands that most of the other systems provide.'® Moreover, DIRSYS aliows the
user to get help without interrupting the immediate task. It must be noted, however,
that if only a search command is available as in, for example, NICNAME, a more
detailed level of heip may not be needed.

in addition, since DIRSYS is modeled after a paper phone book, a scresniul of
information is comparabile to a "page” in the electronic phone book. The surveyed
systems do not necessarily display pages from the electronic phone book. instead,
they display & set of entries that metch a typed string. in response 0 “whois lee", for
example, the CSNET Name Server will display all entries that contain the string “lee”
in any field, not just the last name field.

With DIRSYS, as well as the French, the New England Bell, the experimental Bell, and

17 30nn Beyer, Bel Laboratories, personal communication.

"mmmmbnmmnnmmuummm¢
help.

114

PHONE directory systems, a central authority is in charge of gathering and updating

the information in the directory. In addition, DIRSYS provides users with a command
' for submitting an update request, and the update requests are sent to a manager
before being incorporated into the database. The CSNET Name Server and INQUIR
allow users to add, modify, and celete their directory entries without the intervention
of a manager.

SO

Finally, DIRSYS contains directory information for members of the M..T. community §
and is maintained on a central computer. All of the surveyed systems, except |
INQUIR, cross institutional or regional boundaries in terms of the information that
they contain. They may not be maintained on computers in different locations,
however. The CSNET Name Server and NICNAME, for example, contain information
for individuals and institutions throughout the United States and are maintained on
central machines. In contrast, PHONE contains information for individuals :
associated with one company, IBM, but the system is maintained at many sites. 1

- amann A

1.3 Thesis Organization

X Chapter 1 has presented an overview of this research and a survey of related work.
a Chapter 2 raises questions upon which this research was focused; the subsequent :
chapters seek to answer those questions. Chapter 3 describes the system, and i
| chapter 4 presents a preliminary evaluation of it. Chapter § presents conclusions and

examines questions that are topics for future research. Appendix A containg |
definitions of terms used in this thesis, and Appendix B contains performance graphs i'
(which are discussed in Chapter 4).

18

Y . T "I ST A

e

&~' ik

Chapter Two

Operational and Design Issues

There are many issues o be resolved when building an online directory assistance
system. Some of the issues, termed operational issues, were resolved on the basis of
what seemed practical and organizationally efficient. These issues include acquiring
directory information, identifying how to maintain and update the information, and
identifying the users of the system. Other issues, termed design issues, became the
focus of this research and include Questions about the design of the interface, the
database, and the update mechanism.

2.1 Operational Issues

Acquiring Directory Information

Who should be listed in the directory? The answer to this question is an
organizational decision. In a business setting, the question of who should be
included in a company-wide directory may not be difficult; the group of employees in
a company is usually clearly defined. At M.I.T., however, there is a "soft” boundary
between those who are associated with the Institute and those who are not. There
are numerous and varied affiliations held with M.l.T. For example, individuals who
are not members of the M.I.T. student body, faculty, or staff may be allowed guest
accounts on M.L.T. computers. Some former members of the student body, faculty,
and staff may maintain ties with the M...T. community after leaving the Institute, e.g.,
computer accounts or consuiting with colleagues.

In making a decigion about membership in the online directory assistance system, it
was assumed that students and staff members listed in the M...T. paper phone books

.would be listed in the electronic phone book as well. Since the registrar's office

19

[ONPER B B

maintains records of student enroliment and the personnel office maintains them for
facuity and staff appointments, and both offices provide information for the printed
phone books, it was appropriate that thess offices be a source of information for the
electronic phone book.

Additional information, specifically electronic mail address information, was obtained
from various M.I.T. computers. The electronic mail addresses were then added to the
appropriate records of phone book information that had been obtained from the
registrar's and personnel offices. If a person had electronic mail addresses on
several M.I.T. computers, all the addresses were included in the directory and listed
when a user viewed that record using DIRSYS. Thus, each entry in the electronic
phone book contains the information available in the M.\.T. phone book'® and
electronic mail address information. When DIRSYS ceases to be a research tool, a
method will be needed for asking people which information they would like listed in
the online directory. For the time being, at the beginning of the fall term people are
given the choice of not being included in this experimental online directory system by
filling in a form that is distributed by the registrar’s and personnel offices. Currently
there is no proposed scheme for asking people which, if any, electronic mail address
they would like listed in the online directory. The verification of electronic mail
address information is organization dependent and can be done for the M.L.T.
community if the registrar's and personnel offices ask for such information at the
same time that they collect other phone book information.

Maintaining and Updating Directory Information

it was assumed that the system would be maintained on a computer dedicated to
running the system in order to avoid complications and delays on a large
time-gharing system that provides other services. In addition, having the entire

"mwmmm.r.mmmm.m“mmw.
dorm phone number for students, department, and Htle (for taculty and statt members) or gracdhusting
year (for shudenis).

e - r
PR SRS U N SIS

system reside on one computer avoids problems associated with distributed
databases. (Maintaining the system on more than one computer is discussed in
Section 5.2))

The system was designed on the assumption that it would be maintained by a
manager, who would update the directory database according to policy issues
formulated by a central authority and who would be responsible for maintaining the
reliability of the information in the directory database. Putting a manager into the
update scheme also might discourage unauthorized modification of the database
since the commands that actually change the database would be available only to the
manager.®

Requests to update information in the directory database could be sent to the
DIRSYS manager by (1) the registrar's and personnel offices, (2) by the
telecommunications operators (when someone informs the operators over the phone
of new information), and (3) by persons who wish to send the new information
directly to the manager.

The manager could assume that update information received from the registrar’s or
personnel offices was "official” and could be added immediately to the database. At
present, there is no proposed way to verify the reliability and acceptability of the
update information given to the telecommunication operators or sent directly to the
manager. it is presumed that the DIRSYS manager would be able to devise validation
procedures that would be effective. The presence of an authentication server
perhaps would eliminate the need for validation by the manager when an individual
sent an update request using DIRSYS from a machine on which the login name could
be determined.

%Mhmuumumwmwonmnm No security features were
introduced.

e TR R Gt San ol o

In addition to the updates that would be received on a daily basis,?' academic
institutions such as M.I.T. will have a large amount of new information to be added to
the directory database, as well as a large amount of old information tc remove, on a
yearly schedule, e.g., in September. Eventually, the exchange of this information
between the registrar's and personnel offices and the directory system manager
could be automatic. it may be assumed at this stage that a new database would be
built in the same way that the first one was built, i.e., based on current directory
information obtained from the registrar's and personnel offices collected, say, at the
beginning of the fall semester in September. An alternate method would be to merge
the new information into the old database.

DIRSYS Users

Several classes of DIRSYS users were identified. The DIRSYS manager would not
necessarily be an experienced computer user, but would be an experienced, routine
DIRSYS user after initial training. The M.L.T. telecommunications operators would
use the system routinely to provide directory assistance service for people who called
in requests for information. They would not necessarily be experienced computer
users, but would be experienced DIRSYS users after initial training. There would be
two classes of infrequent users: those who are members of the M.l.T. community and
those who are not. The infrequent user would be an inexperienced DIRSYS user, but
could be either an experienced or inexperienced computer user.

DIRSYS users could access the system using typewriter-like keyboards and terminals
connected directly to the DIRSYS machine and distributed throughout the M.I.T.
community. Aiternately, they could access the system from other terminais by means
of a network connection to the DIRSYS machine. (An interface that employs a mouse
is described in Section 5.2.)

2111 number of daily updates probably would be smell.

e A B k& b= en

g

2.2 Design Issues

The interface

Questions with respect to the interface, i.e., how the user interacts with the system,
are as follows: Should the interface be incremental, i.e., should the screen be
updated after each character that the user types? Or should it be non-incremental,
i.e., does the user type a complete name and then hit an <ENTER> key to tell the
system to start searching for that name? Should the user interact with the system by
typing commands or by selecting commands from a menu? Perhaps learning aids
could be designed to guide inexperienced users without encumbering experienced
ones. Also, perhaps the system could uniquely identify the record of information for
which the user was searching. How, then, might the system deal with nicknames and
aliases, middle names and initials, as well as misspelled names? Should the system
allow users to search on fields other than full name, i.e., could someone type a
department name and then be shown a list of all people in that department? How
might the same interface be used to send update information to the DIRSYS
manager? Finally, how might the system enforce the M.I.T. privacy policy, which
currently states that the phone book is not to be made publicly available, especially
for commercial purposes? In other words, how could the system make
reconstruction of the phone book difficult for someone outside M.I.T.?

In exploring answers to these questions, it was discovered that one interface design
could not meet all the requirements. It was decided to experiment with an
incremental interface to discover ways it might be used easily. The user could type
only as much of a name as was required to find the desired entry. Ideally, the user
would be able to see the desired entry on the screen after typing only a few
characters. The incremental interface also had the potential of closely modeling the
way people scan paper phone books. In addition, it was decided to experiment with
designing an interface that employed simple typed commands rather than menus of
commands. It was hoped that novices could learn to use the system as quickly as
with menus and that the system, once learned, would be easier and faster to use than

a system with menus. With the incremental interface, perhaps the user could deal

more quickly and efficiently with nicknames than the system could and, moreover,
the identification of a unique phone book entry could be left up to the user. The
incremental interface, however, could not deal effectively with misspellings and
searching on fields other than name (where the last name is included) since its
design would be organized around searching for information using alphabetized
names. Thus, a second interface would be needed. The incremental interface could
be used to send update information to the manager. People in the registrar's and
personnel offices, the telecommunication operators, and people wanting to change
their own directory information could use the same interface for submitting update
information. Finally, the incremental interface would not address privacy issues well
enough for it to be used by people outside the M.I.T. community because there would
be no way to limit the amount of information that appears on the screen. A separate
interface, then, would have to be implemented for use outside M.I.T. (The
incremental interface is described in detail in Section 3.1. Additions to this interface
and an interface for use outside M.|.T. are discussed in Section 5.2.)

The Database

Questions about the database design included: What is a simple database structure
that will allow fast system response? What kind and how many levels of indexing are
needed?

It was decided to set up the database as a sequential file of records with three levels
of indexing. This organization would facilitate the random accessing needed when a
user types a name and the sequential accessing needed for displaying consecutive
records of information on the screen. The main index was to take advantage of the
fact that the database was to be ordered alphabetically by last name by having
names, or parts of names, from the database as its index entries. (The organization
of the database and its indexes is described in detail in Section 3.2.)

R Rt ety

b R gy oSt oA

Update Mechanism

Finally, questions about the scheme for keeping the database up-to-date needed to
be addressed. How could the database be updated without changing the database
that DIRSYS was using, i.e., so that the system could remain reliable? How could the
database be updated simply without degrading system performance? How often
should updates be incorporated into the database?

it was decided that in order not to "disturb” the database that DIRSYS was using, the
updates should be kept in a file separate from the database and that they should be
added to a copy of the database. In this way, a copy of the old database also could
be kept intact in case something went wrong with the update process. Since the
update program would need to copy the database, it scemed expedient that it copy
the database and update it at the same time. Thus, the database and indexes would
be completely rebuilt when updates were added to the database. In addition,
rebuilding the database would be much simpler than having the daemon only rebuild
parts of the database, and the daemon could use the same build procedure that was
used to build the database and indexes the first time.

it seemed appropriate to rebuild the database at night rather than during the day
when the number of users might be large, thus reducing the possibility of degrading
the system response time. The rebuild process could be automatic. An update
program could check to see if the database needed to be rebuilt, and if 80, rebuild it.
The manager could switch DIRSYS to the new database the next morning after
having inspected the new database to make sure that it had been rebuilt properly.

it is generally expected that once a paper phone book is printed, changes will not
appear until the next issue. New directory information may not be available in print
for as long as a year. With an online directory, however, there is no printing of a
phone book involved; changing a file on a computer is required. Thus it may be
feasible to update the directory database frequently. Updates made more often than
once a day would not be necessary, however, since a maximum wait of 24 hours

! before new information would be visible would not seem an excessive delay,
‘ especially when the update validation step takes a few days. (The update procedure
is discussed in more detail in Section 3.3.)

e il e

Chapter Three

The System

i DIRSYS, implemented in the CLU programming language [30] on a DEC-SYSTEM 20
? and a VAX 11/750,2 has three parts: the interface, the database, and the update file.
This chapter describes each of these parts.

P AN

E ' 3.1 The Interface

In this section, principles that were followed in designing the interface are presented,
followed by a description of the interface from the user's point of view. The section
ends with a description from the designer’s point of view of the interface features that
illustrate the design principles.

e A PRa AR SR

3.1.1 Design Principles

. ; As mentioned earlier, the primary goal for DIRSYS was to design a system that could
be used by inexperienced, experienced, and occasional users. Therefore, the
DIRSYS interface, which is the part of the system through which users interact with
DIRSYS, needed to be designed to reflect the needs of all classes of users. It needed
to be easy to learn to use and easy to use once it had been learned.

e

et

Several principles guided the interface design and are discussed below. Features of
the DIRSYS interface that illustrate each of these principles will be pointed out in the
interface description and in the section following the description.

22110 DEC-SYSTEM 20 rune the TOPS-20 operaing system; the VAX 11/760 runs the UNIX apersting
gystem.

U PSS

1. User's Model: Users often perform best when they have a clear
conceptual model of the system that they are using [7, 16, 28, 38]. The
model enables the users to understand what the program is doing and to
anticipate the effect of their actions. It also enables them to develop
their own strategies for using the system. in order for the user's model to
be intuitive and easy to learn, it has been suggested that the system, and
specifically the interface, be based on concepts that are familiar to the
user [38].

2. Minimal Command Set: Users may be overburdened by systems that
contain more features than are needed for completing a particular task.
They may be tempted to learn all features even though some of them are
not needed for the task. In addition, redundant forms of the same
operation may cause users o be confused and have difficulty
remembering the choice of ways to perform an action [28]. There is
evidence from decision theory that suggests that user performance is
improved when the number of alternatives with which a user is
confronted has been minimized [13,33]. In addition, there is
experimental evidence to support the assertion that users perform best
with the smallest possible command set that permits completion of a
given task [2]. In light of this assertion, extraneous features, i.e., those
unrelated to the task, and redundant teatures, i.e., duplicate forms of
commands, should be avoided. it should be noted that these assertions
probably would not be substantiated for a system designed only for
experienced computer users.

3. Simple Command Structure: Evidence suggests that for commands to
be easy to learn and easy to remember they should have a simple
structure and their names shouid be based on English (or German,
French, etc) phrases composed of familiar descriptive words
[7,17,28,38). For systems that employ typewriter-like keyboards,
command abbreviations aid in rapid, correct input of commands [28]. If
the abbreviation scheme is consistent and simple, it often contributes to
better user performance by reducing the effort in memorizing commands
and in reducing the number of errors in entering abbreviated commands
[23]). Experimental data suggests that the most easily remembered
abbreviation scheme s first letter abbreviation.Z® First letters are also
fast and easy to type. To use this scheme, however, the command set
must not be large or command names may become obscure in an
attempt to keep first letter abbreviations unique.

Brresdmen, J.L. and Landewr, T.K. Retrieval of Long-Term Memory: Tip-of-the-Tongue
Phenomanon. Psychological Science, August, 1088. Cited by [28].

e et

4. Consistent Command Interpretation: Evidence suggests that to
decrease users’' confusion, commands should not have different
meanings in different contexts[17,28,38]. Instead, they should
consistently perform the same actions. Some systems, for example, may
interpret the letter Q as quit in one context and as text in another. To
avoid user confusion and decrease the number of user errors due to not
knowing which command meanings are associated with the current
context, systems should not interpret commands differently in different
contexts.

T A £ 4% A R - AN RS 1 ST

5. Help Facility: The command for getting help should be simple and
concise. The user shouid be able to get help from the system at any
point in the user session without interrupting the immediate task, and the
assistance provided should be specific to the user's current context
[43, 44, 49]. Users differ in the amount of help that they need or want. A
novice may want a detailed description of a certain command, while an
occasional user may want a sentence or two, and an experienced user
may want only a brief explanation. Thus, the system should provide
different levels of help.

e Ry P, T AW S e

B

6. Feedback: Users should receive feedback from the system so that they
know what the system is doing. Feedback includes echoing of typed
: characters, indication of a selected object, acknowledgment of receipt of
- ; a command, and explanatory messages [14,38]. The explanatory
E) P messages should be displayed in a conspicuous place on the screen, but
‘ should not interfere with the user’s text. They should be concise, polite,
understandable, and informative [28, 43, 44, 47, 49). Examples of
explanatory messages include notifying the user that the system is still
working on a request (if a particular command execution is slow) and
notifying the user when he has made an error (since continued
commands may be invalidated by the previous error). If the message is
the result of a user error, it should appear immediately after an error so
that the user does not have to mentally reconstruct what he did [14, 38].
The error message should not only indicate that there was an error, but
; also should explain the error and indicate what the user may do next.
i Error messages should be phrased positively and should avoid
g implication that the user is at tauit {28, 47].

. ’
e - A M e s am -

= In addition, the user should be able to give the system maintainer
1 ‘«A’ feedback. Comments about difficulties are useful in improving and
N maintaining the system.

)

e ——

7. Error Handling: The system should be resilient against a variety of user
errors. Thus, it should be virtually impossible for the system to terminate
abnormally, i.e., the system should be robust (7, 25, 55). if a system error
should occur, a message explaining the error should be sent to the
system maintainer. A message should be sent to the user informing him
that a system error has occurred, but not detailing the error. The
underlying aspects of the computer should be invisible to the user, and
the user should not be distracted by information intended for the
maintainer [44].

3.1.2 What the Interface Looks Like

In this section, the interface is described from the user's point of view. Its features
are illustrated by describing how the user interacts with the system.

Starting DIRSYS

When DIRSYS starts up, the first screen, the herald, shown in Figure 3-1, contains a
brief description of what the system does, how to start using it, and a list of the
commands needed by the first-time user, along with the functions of those
commands. It also gives an address to which users may send comments.?4

After the herald has been displayed, the user has two options: he may begin
searching for a name, or he may get additional instruction on how to use DIRSYS by
starting a tutorial. (Searching for a name is discussed in the next subsection; the
tutorial is discussed in the subsection entitled "Getting Help.")

Looking Up a Name

Once the herald has been displayed, issuing the exit screen command, CTRL-E,
causes the heraid to be replaced by a screen that is divided into four rectangular
areas, called windows: the label window, the directory data window, the status
window, and the echo area. This screen is called the search screen and is shown in
Figure 3-2.

The top line of the screen is the label window. It containg information about the
window that is located just below it. For example, in the screen that appears
immediately after the herald, the label window contains headings for the columns of
information that appear in the directory data window.

2‘(:urromly.thoa:mfessisanelec.:trt:micmaii addresa. A better alternative would be to have a
command in DIRSYS for sending comments directly to the manager, SinCe users may not have access 0
an electronic mail system,

2811g notations "CTRL-E* and "1E" represent hitting the key labeled "E" while hoiding down the key

31

DIRSYS -- NIT Directory Assistance System
DIRSYS is an electronic MIT phone book. A brief explanation of how to use it
is given below. If you have never used DIRSYS before or want to review how to
use it, you may want to start the tutorial, by typing *7. (This notation means
hit the key labeled "T" while holding down the key labeled "CTRL".)

¢ To start DIRSYS, hit ¢E, °°
Then to start searching for a name, begin typing the name in the form:

Last name, First name, Middle name

Other useful commands:

? HELP (l1sts available commands and their functions).
+Q Quit the program.
N go to Next line.
1P go to Previous 1ine.
+f go Forward one screen.
+8 go Backward one screen.
 Delete one character from what you have typed.
K Ki11 the search and start over.
*S display more information about entries (Switch format).

You may send comments via slectronic mail to DIRSYS at MIT-XX.

Figure 3-1: Herald Screen

The bottom line of the screen is the echo area, and the characters that the user types
appear there. It contains the following prompt at the beginning of the line:
“Name (last, first, middie): .

The two lines above the echo area form the status window. The top line of the status
window is used to send messages to the user. For example, immediately after the
heraild disappears, DIRSYS sends the user a message saying that it is getting the first
screen of entries and to please walit. The bottom line of the status window contains a
list of available commands.

The directory data window, or data window, takes up the largest area of the screen.
it is located in the center of the screen between the label and status windows and
containg the "pages” of the electronic phone book. Each fine on a page gives
information associated with a person who is listed in the directory. This line of

. ‘
Mkl et o im am -

[

AP) e 8 TS - YA RS A

P SRR G AR R e o T

Nam®.....cov0vnsencscnsescclim PhoRe.... . MIT oxt....DOPt..cccocevecees. . StALUS

ALLEN, LARRY, W 646-3080 ... 3-8020 ... LAB FOR COMPUTER SCI ..STAF

baldwin, robert, w 494-8490 3-6020 elec eng & comp sci 0
berlin, stephen, t 3-1448 lab for computer sci staf
bridgham, david, a 255-60683 1988
comfort, sarah 3-6002 lab for computer sci staf
cooper, geoffrey, h 3-60086 elec eng & comp sci 9
corbato, fernando 3-6001 elec eng & comp sci fac
estrin, deborah 497-9491 3-6006 elec eng & comp sci [
feldmeier, david, ¢ 255-9540 elec eng & comp sci 1984
gifford, david k 3-6039 elec eng & comp sct fac
gramlich, wayne, ¢ 494-1076 3-8042 elec eng & comp sci 9
greenwald, michael, b 497-0472 3-6042 lab for computer sci staf
harteneck, ralf 494-9833 3-6020 elec eng & comp sci 1984
hopkins, grace 3-6042 elec eng & comp sci 1984
hornig, charles 3-7788 elec eng & comp sci 1983

COMMANDS: 7, +T, *R, *N, *P, +F, *8, *S, , *¥W, *K, +Q, ESC-M
Name (last,first,middle):

Figure 3-2: Sample Search Screen

information is called an entry. The one line per entry format allows the user to scan
the pages quickly, since it allows many entries to be displayed per screen.

The user’'s attention is focused on one entry by highlighting that entry. DIRSYS
highlights an entry by displaying the information in reverse video if the terminal has
this capability and in uppercase letters, leaving other entries in lowercase. It also fills
spaces between fields of information with periods.

To focus the user’s attention in the center region of the screen, the highlight only
travels between an upper and a lower margin in the data window.?® Should the entry
to be highlighted be above the upper margin, the data window will scroll backward,
placing the highlighted entry at the lower margin. Similarly, when the highlighted
entry appears below the bottom margin, the data window scrolls forward, placing the
highlighted entry at the top margin. In this way, the highlighted entry always has at

2‘l’houmar\mmuromtvlail:mtmmoa(:roon.

. . - .
T PRNpEO U S o

least a margin's worth of entries above or below it for context. Consideration was
given to keeping the highlight in the center of the screen, i.e., setting the margins
equal to one-half of the data window height. In this scheme, the background text
rather than the highlight would move when the highlighted entry changed. Thus, the
entry of interest would always be in the center of the screen. It was found that the
user had a difficult time focusing on the highlighted entry with the background
constantly changing. As a compromise between letting the highlight appear

anywhere on the screen, i.e., having no margins, and keeping the highlight in the
center of the screen, i.e., having margins of one-half the data window height, the
margins currently are set at one-fifth of the data window height.

DIRSYS provides the user with two ways for looking up a name. The user can type
the name into the echo area, letting DIRSYS display the appropriate page, or he can
use commands to scroll forward or backward through consecutive pages of the
directory database.

As the user types characters into or deletes characters from the echo area, DIRSYS
checks to see if the first matching entry is already on the screen. If it is, then the
highlight is moved to that entry. If it is not, DIRSYS sends the message, "Searching
for x, please wailt...", where x is what the user has typed into the echo area. When
the new page is displayed, the matching entry is highlighted and appears at the top
margin. The process is repeated as the user continues to type or delete
characters.?’

When the last character is deleted from the echo area, the highlight does not move.®
in a earlier version of the interface, the highlight returned to the beginning of the
database when the echo area was empty. In this way, deleting characters from the
echo area always had the same effect, that of searching for the closest matching

”nmopnmam.omsvsmmmmuaumwmwmmm
2116 tast character may be deieted with CDELD, CTRL-W, or CTRL-K.

M

entry. The user could also get a sense of starting over. It was found, however, that
when the user searches for several different names, the redisplay between searches
is distracting. Redisplaying the first page of the directory database also seemed
unnatural since one seldom goes back to the first page of a paper phone book when
looking up several names.

If there is no entry in the directory database that matches what has been typed in the
echo area, DIRSYS will inform the user and highlight the closest matching entry. In
this way, the user can verify that no matching entry exists and perhaps will see an
alternate entry. For example, if the user types the name "Bob Smith" and does not
find it listed in the directory, he might notice an entry for "Robert Smith" and decide
that that one is the desired entry.?®

Instead of typing the name into the echo area, the user can issue commands to move
the highlight forward or backward through the directory. Commands are available for
moving the highlight to the previous entry, the next entry, the previous page, or the
next page. When one of these commands is given, the echo area does not change to
match the newly highlighted entry; it contains only the characters that the user has
typed, if any, because it was judged that having the program change the contents of
the echo area in order to match the highlighted entry would be disconcerting to the
user.%0 Subsequent typing into the echo area will cause the highlight to be positioned
as if it had not been moved manually. Thus, typing into the echo area takes
precedence over manually moving the highlight. An alternative would be to indicate
to the user which characters in the echo area match the currently highlighted entry
by displaying the matching characters in the entry of interest in high intensity
highlighting and the rest of the entry in low intensity highlighting.

Should the user want to see more information than is displayed in the one line per

2\ore sophisticated matching schemes could find nicknames. This idea is discussed further in
Section 5.2.

P1nis idea needs to be tested.

v Ty

[T S U

EXPANDED DISPLAY (*S switches format)

Name: corbato, fernando. J (corbato@dmit-xx)
Status: professor, elec eng & comp sci

Work addr: ned43-5xx; x3-6001

Home addr: home; 527-6204

Name: ESTRIN, DEBORAH, L (estrin@mit-xx)
Status: GRADUATE, ELEC ENG & COMP SCI

Work Addr: NE43-508; x3-6008

Home Addr: CAMBRIDGE, MA; 253-6006

Name: feldmeier, david, ¢
Status: 1984, elec eng
Work addr: ne43-504

Home addr: home; 255-9540

Name: gifford, david, k

Status: assistant professor, elec eng & comp sci 1
Work addr: ne43-507; x3-6039

Home addr: home; 123-4567

COMMANDS: 7, *T, *R, *N, *P, *F, *B, ¢S, , *W, *K, +Q, ESC-M
Name (last, first, middle):

Figure 3-3: Sample Search Screen in Expanded Format

entry format, or compressed format, a command (CTRL-S) can be given to switch the
entries in the directory data window into expanded format, shown in Figure 3-3. The
system commands and the windows are the same as when entries are in compressed
format. The label window indicates that the entries are in expanded format and
reminds the user how to switch formats. The echo area functions in the same way as
with compressed format. The top line of the status window stili contains messages to
the user, and the bottom line of the window still contains a list of available
commands. In expanded format, the directory data window contains fewer records
of information on the screen at one time, since each entry takes up more space.
Highlighting an entry in expanded format means displaying it in capital letters, with
each line of the entry in reverse video if the terminal has this capability. The same
command, CTRL-S, returns the directory data window to compressed format. In this
way, the user has to remember only one switch format command.

Getting Help

The user can ask for help by typing CTRL-T or “?". The CTRL-T command starts a
tutorial which explains in detail how to use DIRSYS. It was designed to help the
novice understand what the commands do and how to use them. It must be asked for
explicitly with a command so that the user can get the detailed instruction only if he
wants it. The experienced computer user or experienced DIRSYS user probably
would not need to read it.

The screen that appears when starting the tutorial contains the label window, the
status window, and the tutorial window. (See Figure 3-4.) The echo area is now
blank since the user cannot add characters to it while in the tutorial. The label
window gives the name of the currently displayed tutorial section and reminds the
user to type CTRL-E to exit the tutorial. The top line of the status window tells the
user that he is in the tutorial and gives the names of the previous and next tutorial
sections. The bottom line of the status window lists the commands that can be
issued while in the tutorial.

The tutorial window replaces the directory data window and contains the text of the
tutorial. The text is organized into seven sections: What is DIRSYS?, Getting Started,
Looking Up a Name, Expanded Format, Getting Help, and Requesting an Update.
The section titles are listed at the beginning of the tutorial. The user moves through
the text by using CTRL-F to move forward a page and CTRL-B to move backward a

page.

The help facility that is available using the "?" command was designed to aid both
inexperienced and experienced users and provides help only when and where
required. It has two levels, the first of which reminds the user of the available
commands and command functions. The second level gives a more detailed
explanation of a specified command. Thus, the help facility serves as a learning tool

for first-time users and as a reminder for experienced, but infrequent users.

TUTORIAL: Getting Help (*E exits tutorial)

GETTING HELP

The help facility, available by typing "7", has two levels. The first level
reminds you of the available commands and their functions. The second level
gives a more detailed explanation of a specified command.

The first level help window disappears when you type any letter or one of the
commands listed in the help window. The window that was on the screen before
you typed "?" will be restored. If a letter was typed, it will be added to
the screen in the appropriate place. If a command was typed, it will be
executed in the restored window.

Once the first level help window is on the screen, you may request more help
on a command by typing another "?" followed by that command. A second
level help window will appear that contains a detailed explanation of the
command that you typed. You may return to the first level by typing CYRL-E.

TUTORIAL SECTIONS: Prev -- Looking Up a Name: Next -- Requesting an Update
COMMANDS: tF (next page), *B (prev page), tE (exit), tR (redisplay), *¢ (quit)

Figure 3-4: Sample Tutorial Screen

The help window that appears after typing a "?" is best thought of as a pop-up
window in that it appears when the user issues the help command and disappears
when the user begins typing again. It covers up the labe! window and the top part of
the directory data window.3! The echo area and status window remain on the screen.

The content of the help window differs slightly depending on which window was on
the screen before the help window appeared. Each help window contains a list of
currently available commands and their functions and brief instructions about how to
get more help on any of the commands listed. Any other options available to the user
are also listed. If the user types a "?" from the directory data window, for example, a
brief explanation of how to start, or continue, searching for a name also appears in
the help window. (See Figure 3-5.)

31The fraction of the data window that is covered up depends on the screen size and the amount of
text in the help window. In some cases, the help window completely hides the data window.

AVAILABLE COMMANDS -- type one of the following:

143 Exit current screen

+R Redisplay current screen
(Any of the following commands may be executed from this help window. The
data window will reappear, and the command will be sxecuted there.)

+7 start the Tutorial

N move to Next line

*P move to Previous line

+F move Forward a screen

8 move Backward a screen

*S Switch to expanded format

 Delete a character (use the key)
" delete a Word backwards

K Ki11 search and start over

+Q Quit the program

<ESC>-M request that your entry in the directory be Modified

or to get more help on a command, type another "?", then that command
or to search the directory, start typing a name

- - - - Y T T T T e e T T e e e e P R e R T e e = T W .

COMMANDS: ¢E,*R,+T,*N,*P,¢F,+B,*+S,, W, *K,1Q,<ESC-M>,? followed by command
Name (last, first, middle):

Figure 3-5: Sample First Level Help Window

The user may execute one of the commands or options listed in the help window
without explicitly exiting the help window first. As soon as the user types a command
or character (except "?"), the help window disappears, the previous window
reappears, and the command is executed in the restored window or the character is
added to the screen in the appropriate location. If, for example, the user types a "?"
from the directory data window and then types a character once the help window
appears, the directory data window will reappear, and the character will appear in the
echo area.

If the user requests more help on a command, by typing "?" followed by the
command, then a second level help window appears, replacing the first one. (See
Figure 3-6.) The echo area is now blank since the user cannot add characters to it
while in the second level of help. The new help window contains a detailed
explanation of how to issue the specified command and what that command does. It

Bt el

DETAILED EXPLANATION OF N (*€E exits this help)

tN, issued by hitting the "N” key while holding down the "CTRL" key., causses
the highlight to be moved down one line. (The next screen will be displayed
if the highlight is near the bottom of the screen.)

Current Options:
(1) type tE to exit and return to the first level of help,
(2) type "R to redisplay this screen
(3) type *Q to quit DIRSYS

--

comfort, sarah 3-6002 lab for computer sci staf
cooper, geoffrey, h 3-6006 elec eng & comp sct [
corbato, fernando 3-8001 elec eng & comp sci fac
estrin, deborah 497-9491 3-8005 elec eng & comp sci 9
gifford, david | 3-6039 elec eng & comp sci fac
gramlich, wayne, ¢ 494-1076 3-6042 elec eng & comp sct 9
greenwald, michael, b 497-0472 3-6042 lab for computer sct staf
harteneck, raif 494-9833 3-6020 elec eng & comp sci 1984
hopkins, grace 3-6042 elec eng & comp sci 1984

COMMANDS : +E, *R, *Q

Figure 3-6: Sample Second Level Help Window

also lists the user's current options. Should the user type only a "?" from the first
heip window, the prompt, "Command character:”, will appear in the echo area.
When the user then types a command, it is displayed after the command prompt.

Consideration was given to providing more options at the second help level,
including allowing the user to ask for help on another command from the second
help level and allowing the user to exit the second level help window without having
to retumn to the first help level. With the latter option, the user would be abile to
exccute a command from the second level help window in the same manner as from
the first level help window. The user could type CTRL-N from the second help level,
for example, and the directory data window would reappear with the highlight moved
to the next entry. Since these options might seem confusing and unnecessarily
complicated to a user unfamiliar with DIRSYS, they were not provided.32 The user
can quit DIRSYS from the second level help window, however. '

&monlamlimwithDIRSYSmigMlmmoemaomlmmwymmwmm
fevet of help very often.

P

e

Requesting an Update

The user can request that his entry in the directory database be modified. 33 (How the
updates are added to the database is discussed in Section 3.2.) Typing ESC-M
causes a screen to appear that contains the label window, the status window, and the
update request window. (See Figure 3-7.) The echo area is now blank because
typed characters will appear in the update request window rather than in the echo
area. The label window indicates that a modification request is being submitted and
reminds the user how to submit the request and exit the window. The top line of the
status window still contains messages to the user, and the bottom line of the status
window lists the commands that can be issued while the update window is on the
screen.

The update request window replaces the directory data window and contains a brief
explanation of how to request an update and a "form" that contains the user's
directory information. The user is instructed to erase the information that is no
longer valid and replace it with the new information. The form can be edited by using
CTRL-N or a carriage return® to move to the next line, CTRL-P to move to the
previous line, to delete a character, CTRL-W to delete a word, and CTRL-K to
"kill" a line of information. He is then instructed to type CTRL-U to submit the update
request and CTRL-E to exit the update request window. The user also is informed
that he may exit the window without submitting a request by typing only CTRL-E.
Finally, he is warned that the update requests are reviewed by the DIRSYS manager
and that usual policy forbids changes to any record other than his own.

When an update request for a record has been submitted, the proposed changes for

aaOne of the duties of the DIRSYS manager is to insure that a person can modify only his own record
of information. The presence of an authentication server perhaps would relieve the manager of this duty
in the case of an individual sending an update request using DIRSYS from a machine on which the login
name could be determined.

3‘Carriaoerelumwuaddodsinoeitisnaluralforpeoplewhoareuaedtotypingontypewﬁmw
typewriter-like keyboards to hit a carriage return to move to the next line.

41

e e Bl - i e

MODIFICATION REQUEST (tVU submits request, *E exits)

To request that the following record of information be modified, erase old
information and type in new information. Then type tU to submit the request
and *E to exit the screen. You may exit the screen without submitting the
update request (by typing only tE). (Use to delete a character, tW to
gdelete a word, *K to ki1} 3 1ine. *N or C(RETURN> to go to next 1ine, *P to go
to previous 1ine.) Update requests are reviewsd by the DIRSYS manager.

Usual policy forbids changes to any record other than your own,

NAME (last, first, middle): Smith, Learry, D 1

HOME STREET ADDRESS: 1234 West End Dr.

HOME CITY, STATE, ZIP: Arlington, MA 02174

HOME PHONE: 648-9000

WORK STREET ADDRESS: MIT

WORK CITY, STATE, ZIP: Cambridge, MA 02139

WORK PHONE : ,
DEPARTMENT : elec eng & comp sci

TITLE OR GRADUATING YEAR: assistant professor

ELECTRONIC MAIL ADDRESS:

COMMANDS: +N, +P, +E, U, , *K, *W, +Q, *R, *T, or T for help

Figure 3-7: Sample Update Request Window

that record are visible the next time the record is displayed in an update request
window. (See Figure 3-8.) In this way, a person will know what update information he
has already submitted. The proposed new information is not shown in the directory
data window until it has been validated by the manager. When it has been validated
but not incorporated into the database yet, it will appear in place of the old
information whenever the record is displayed because DIRSYS searches the update
file for valid information before displaying a new page of directory entries.®

Consideration was given to allowing the user to submit addition and deletion
requests as well as modification requests. Since individuals who are in the paper
phone book do not decide whether or not they are included in that phone book, it
was decided that DIRSYS should not allow users to decide whether or not they

By is hoped that the number of update requests will be smell 80 that this sserch will not incresse
mnmlm.

R e Sk

MODIFICATION REQUEST (tU submits request, *E exits)

To request that the following record of information be modified, erase old
information and type in new information. Then type tU to submit the request
and *E to exit the screen. You may exit the screen without submitting the
update request (by typing only *E). (Use to delete a character, tW to
delete a word, *K to kill a line, tN or <RETURN> to go to next line, *P to go
to previous line.) Update requests are reviewed by the DIRSYS manager.

Usual policy forbids changes to any record other than your own.

Changes already submitted are in [].

NAME (last, first, middle): Smith, Larry, D

HOME STREET ADDRESS: 1234 West End Dr.

HOME CITY, STATE, ZIP: Arlington, MA 02174

HOME PHONE : 648-9000

WORK STREET ADDRESS: MIT [NE43-500, MIT]
WORK CITY, STATE, ZIP: Cambridge, MA 02139

WORK PHONE: € 3-6000]
DEPARTMENT: elec eng & comp sci

TITLE OR GRADUATING YEAR: assistant professor

ELECTRONIC MAIL ADDRESS:

COMMANDS: tN, +P, *E, tU, , *K, *W, *Q, *R, *T, or ? for help

Figure 3-8: Sample Update Request Window Showing Proposed Changes

should be included in the electronic phone book. The policy covering who is added
to or deleted from the paper and electronic phone books is decided by the registrar's
and personnel offices. Perhaps addition and deletion request commands could be
available for the DIRSYS manager to use.

Surveying and Marking Updates™®

The commands for processing update requests, i.e., surveying and marking them,
are part of a separate program that is available only to the DIRSYS manager. They
cannot be invoked from DIRSYS. The interface to the program, however, is very
similar to the DIRSYS interface. Most of the DIRSYS commands are used in this
program and retain their semantics. In addition, other commands are available for

3°Uhda«!conwnandshw1hounanaguraworunlnuﬂenllnadyom

'”""’,",'_"

processing the update requests. A tutorial and help facility that are identical to those
in DIRSYS are available, except that they also contain information on the manager’s
additional commands.

When an update request is made, DIRSYS sends the manager a message notifying
him that a new request exists. The manager will then use the update program to view
the new requests by surveying the update requests and will attempt to determine
whether or not the request contains valid information, e.g., via letters or phone calls
to the person whose record is listed in the request. When he has determined whether
or not a request is valid, the manager will edit the request if necessary, mark the
update request as valid, invalid, or waiting, and the update incorporation program, or
update daemon, that runs at night will remove the update request from the list, log
the information that the request contains, and either add the update to the database
or not (depending on whether the request is valid or invalid).

The screen that appears when the survey requests command is given, shown in

Figure 3-9, contains the label window, the status window, the echo area, and the

. update survey window. The label window contains column headings for the

o information given in the update survey window. The top line of the status window is

\ used to send messages to the manager, and the bottom line of the status window lists

the commands that can be issued while the update survey window is on the screen.

The echo area is used for incrementally searching the list of update requests and
functions in the same way that it does in DIRSYS.

e e I8 et e em

The update survey window, located in the same position on the screen as the
directory data window in DIRSYS, lists information for each update that has been
requested and that has not been incorporated into the database yet. The information
| associated with an update request occupies one Kne of the screen, i.e., I8 in
w compressed format, and containa four itema: the name in the record to be updated,
whether the manager has seen the update request, the update status, or status, of

the request, i.e., whether it is valid, invalid, or waiting for verification, and the date

. . ’
e = A e et —

NamO. ...co0ccvrecnsvsccvscsscSOON...o.... . Status.......Date Marked

ADAMS, WARY, W0oeeee == .uv.r.. waiting o.... ==

baker, robert, m -- waiting --
clark, michael, d -- waiting --
baker, robert, m 6-10-83 waiting --
wilson, nancy 6-10-83 waiting --
anderson, rebecca 6-12-83 invalid 6-14-83
bern, stephen, t 6-10-83 invalid 6-15-83
graham, karen, s 6-10-83 valid 6-15-83
davis, james, a 6-10-83 valid 6-15-83
jackson, david, t 6-10-83 valid 6-15-83

COMMANDS: ?,.tN,*P,+F,*8,,*K,*W,+S,*R,*Q,*T ES~-S,ES-U,ES-V, ES-I ES-W, ES-E
Name (last,.first,middle):

Figure 3-9: Sample Update Survey Window

that the status was marked, if it is marked. The requests are displayed in the
following order: those marked unseen are listed first, followed by those marked
waiting, then by those marked invalid, and finally by those marked valid. All the
unseen requests should be marked waiting, but if there are some unseen requests
that are marked invalid or valid, the waiting requests are listed first, followed by the
invalid requests, then by the valid ones. Within each of the four groups -- unseen,
waiting, invalid, or valid -- requests are ordered alphabetically.

The manager can scan the requests in several ways. He can move the highlight
manually as in the DIRSYS directory data window using the CTRL-N (next line),
CTRL-P (previous line), CTRL-F (next page), or CTRL-B (previous page) commands.
He can move around within the current group37 by typing a name into the echo area.
The update requests are searched incrementally for the matching name, and the
highlight is moved to the line containing that name. He can move to the next or

37 71e current group is the group that containg the highlight.

45

Bl M AL S .

PESTE R ST U

previous group with ESC-N or ESC-P, respectively. Upon jumping to a new group,
the contents of the echo area are used to locate and highlight the matching entry in
that group. In this way, the manager can locate all requests for one person.m A

blank echo area causes the first request in the group to be highlighted.

The manager marks a request as seen by typing ESC-S or unseen by typing ESC-U.
The requests are marked unseen by default. The manager would leave a request
marked unseen or mark a previously seen record as unseen if he wanted to be
reminded of it. The update daemon would send a message notifying him of the
unseen request, and when the requests were surveyed again, the request would be
easy to locate since it would appear near the beginning of the list.

The manager also can mark an update request valid by typing ESC-V, invalid by
typing ESC-1, or waiting for verification by typing ESC-W. The requests are marked
waiting by default; therefore, the manager would only mark a request waiting if it had
previously been marked valid or invalid. The status is immediately visible on the
screen, and the requests are reordered to reflect the new status.

Should the manager want to view an update request in more detail, he issues the
switch format command, CTRL-S, which functions in the same way that it does when
issued from the directory data window in DIRSYS. The update requests are then
displayed in expanded format.%® (See Figure 3-10.)

in expanded format, the label window indicates that the update survey window is in
expanded format and reminds the manager how to return to the compressed format
(with CTRL.-S). The echo area functions in the same way a8 with compressed format.
The top line of the status window again is used to send messages to the user, and the
bottom fine of the status window again contains a list of available commands. The

%mmmmmmmammnanam:m

Mimmhmunmmmmmmmwm

e A . AAE cacmees - - w

UPDATE SURVEY WINDOW: Expanded Display (*S switches format)

Name: Smith, Larry, D.

Title & Dept: assistant professor; architecture

Work Addr & Phone: MIT; 3-6000

Home Addr & Phone: 1234 West End Dr., Arlington, MA; 648-9000
Electronic Mail Addr:

NEW: WORK ADDR & PHOME: NE43-800, MIT; 3-8000
Electronic Mail Addr: LDS at MIT-XX

submitted: 6-06-83 by: Smith, Larry. D
marked: seen by: Davis, Alice on: 6-10-83
marked: valid by: Davis, Alice on: 6-15-83

Comments: telephoned at 3-6000 on 6-15-83; ok

COMMANDS: 7,tN,tP, *F,*B,*S,,*K,+¥W, *R,+Q,*T ES-S, ES-VU,ES~-V,ES-I,ES-W,ES-E
Name (last, first, middle):

Figure 3-10: Sample Update Survey Window in Expanded Format

expanded request contains: the current database record, the new information, the
date that the request was submitted and by whom, whether the request has been
seen, and if so, the date that it was seen and by whom, the status of the request, the
date that the status was marked and by whom, and comments about the request,
such as when and how the request was verified.

The manager can scan the requests in expanded format using the echo area or using
CTRL-N, CTRL-P, CTRL-F, and CTRL-B as in compressed format. If only one entry
can be displayed per screen, CTRL-N and CTRL-P will function in the same way as
CTRL-F and CTRL-B, respectively. Also as in compressed format, the ESC-N and
ESC-P commands are available for moving between groups.

Finally, the manager can edit a request if necessary. Typing ESC-E causes the
update survey window to be replaced with an update edit window, which contains the
highlighted update request in expanded format. (See Figure 3-11.) The labet and

47

UPDATE EDIT WINDOW (*E exits this window)
Move between lines with CTRL-N, CTRL-P; edit with , CTRL-W, CTRL-K.

Name(last,first ,middle): Smith, Larry, D

Title & Dept: assistant professor; architecture
Work Addr & Phone: MIT; 3-6000
Home Addr & Phone: 1234 West End Dr., Arliington, MA; 648-9J00

Electronic Mail Addr:

NEW: WORK ADDR & PHONE: NE43-500, MIT: 3-8000
Electronic Mail Addr: LDS at MIT-XX

submitted: 6-06-83 by: Smith, Larry, D .
marked: seen by: Davis, Alice on: 6-10-83 !
marked: valid by: Davis, Alice on: 6-15-83 ;
Comments: telephoned at 3-6000 on 6-15-83; ok
COMMANDS: ?,tE,*N,*P,,*W,*K,*R,*Q,*V, ES-S,ES-U ES-V, ES-I, ES-W h

Figure 3-11: Sample Update Edit Window

status windows remain on the screen and have the same functions as when the
update survey window is on the screen. The echo area is now blank. As in the
DIRSYS update request window, the typed characters will go into the window rather
than into the echo area. The update edit window contains a brief explanation of the
editing commands, which are the same as those that are used when a request is
submitted using DIRSYS. CTRL-N or a carriage return and CTRL-P move the
highlight to next and previous lines, respectively, {DEL> deletes a character, CTRL-W
deletes a word, CTRL-K "kills" a line of information, and CTRL-E exits the update edit
window. The marking commands are also available in the update edit window.

=4 = .

' 3.1.3 Features that lllustrate Design Principles

This section describes, from the designer’'s point of view, features of the DIRSYS
interface that illustrate the design principles that were presented in Section 3.1.1.

1. User’s Model: The interface was designed to simulate the scanning of
a paper phone book -- a process familiar to most DIRSYS users. Like a
paper phone book, the electronic phone book is organized as "pages” of
information, with information for each person occupying one line on a
page. Users can scan up or down a page and forward or back through
the pages as with a paper phone book. Thus, users should be able to
form a clear conceptual model of the directory system, and this model
should aid them in learning to use the system.

In addition, the interface shares certain features with full-screen display
editors such as Emacs [51]. Emacs uses, for example, a status line and
an echo area, a similar command structure, similar cursor movement and
editing commands, and an incremental search. Thus, experienced
computer users who are familiar with full-screen editors should be able
to form a clear model of the system by drawing on their knowledge of
those editors.

2. Minimal Command Set: The DIRSYS command set is small, but it
contains all the commands necessary for using the system. In addition,
the commands are not redundant. The user, for example, does not have
to choose between different but equivalent ways to get help, quit the
program, or redisplay the current screen. In several instances, however,
the result of executing several commands may be the same as executing
one alternate command. Using the command several times could

. have the same effect as using the CTRL-W command; several CTRL-W

‘ commands could have the same effect as one CTRL-K command. In

1 these cases, the CTRL-W and CTRL-K commands were included for
convenience and did not seem to increase the command set to an
unmanageable size. (This assertion, however, needs to be tested.)

3. Simple Command Structure: The DIRSYS command structure is
simple. Each command name is derived from an English phrase that
describes the command function and is abbreviated using the first letter
of the phrase (except the help command, which is issued by typing "?").
For example, the Next Line command is abbreviated with an "N". Hence,
commands are easy to remember and easy to type. A command is
issued by holding down the <CTRL> key while at the same time typing the
command abbreviation. To exit the current screen, for example, the user

i types CTRL-E, and to start the tutorial, the user types CTRL-T. The

49

<CTRL> key is used in order to distinguish commands from text. In this

way, commands still can be abbreviated by single letters, and alphabetic

characters can be consistently interpreted as text. The only commands

that do not require using the <CTRL> key are the help command ("?")

and the request modification command, ESC-M, which is issued by

hitting the <ESC> key then typing the letter M. The "?" is used for help

because it is short, suggesiive, and easy to remember. The <ESC> key is

used instead of the <CTRL> key because typing CTRL-M is equivalent on

many terminals to hitting the carriage return or enter key. It was judged

undesirable to start the modification process with a carriage return

because inexperienced users sometimes hit a carriage return after typing ;
a name, and having the system display an update request window as that :
point would be disconcerting.

4. Consistent Command Interpretation: Commands in DIRSYS do not ;
have different meanings in different contexts; they always perform the |
same actions. The CTRL-R command, for example, always redisplays
the current screen, and the CTRL-Q command always quits the program,
while "?" always causes a help window to appear. Similarly, alphabetic
characters typed without using the <CTRL> or <ESC> keys always are
interpreted as text. If commands are not available in all contexts, they
have the same function in the contexts in which they are available. The
CTRL-W command, for example, is not available in the herald, in the
tutorial, or in the second level help window. Where it is available,
however, it always has the same function, that of deleting a word.

5. Help Facility: The user can get help at any time by typing "?" or
CTRL-T. Both commands allow the user to get help easily without
interrupting the immediate task. The help window that appears by typing
. "?" contains information specific to the user's current context; it
‘ contains a list of currently available commands. Similarly, the tutorial,
/ started by typing CTRL-T, begins at the section most relevant to the
user's current context. If the user types CTRL-T from the update
window, for example, the tutorial starts with the section describing how
to request an update. Finally, different levels of help are provided. Users
who want a detailed description of the system can read the tutorial, while
those who want only a very brief explanation of the commands can use
the first level of the help facility. Those who want more explanation, but
not as much as in the tutorial, can use the second level of the help
facility. The second help level, easily reached by typing a second "?"
and one of the commands listed in the first help window, gives a detailed
explanation of a specific command.

6. Feedback: The system provides several types of feedback to the user.

Characters that the user types are displayed in the echo area, and
matching entries are highlighted by displaying them in reverse video, in
uppercase letters, and with periods between the fields of information.
The system provides the user with prompts, such as the one displayed in
the echo area and the one displayed after the user has typed a "?" to
display a second level of help. in addition, DIRSYS sends messages to
the user via the status window. The messages are concise, polite,
understandable, and informative. They are displayed in a conspicuous
place (on the top line of the status window) and do not interfere with the
other windows on the screen. They always appear in the same place in
order to take advantage of the user's tendency to associate different
meanings with different areas on the screen [4, 14]. Messages are sent
to indicate vhich command DIRSYS is working on if the command is not
immediately executed. When the CTRL-F command is issued, for
example, a message is displayed which says, "Getting next screen,
please wait...". (This sort of message is not necessary with the CTRL-N
command because the highlight is moved immediately to the next line.)
When the matching entry is not on the screen, DIRSYS sends the
message, "Searching for x, please wait...", where x is what the user has
typed. Should the user type an unavailable command, DIRSYS responds
by ringing the terminal’s bell and sending a message saying that x is not
available, where x is the command that was typed, and suggesting that
the user type "?" for help. This message remains on the top line of the
status window until the user types something or for four seconds,
whichever comes first. The bottom line of the status window contains a
list of available commands.

The user also can provide feedback to the system manager by sending
messages to an address that is listed in the herald, in the tutorial, and in
the message that is displayed when the user stops the program.40

. Error Handling: When the system was designed, a wide variety of user

errors were anticipated. Consequently, it is very difficult to cause
DIRSYS to terminate abnormally. If an error occurs that causes the
system to fail, the error is written to a file, and a message is sent to the
maintainers. Tt.. .ser is not given details about the problem, but is told,
"Sorry, DIRSYS isn't working correctly. The maintainers have been
notified, and the problem should be fixed soon. Thank you for using
DIRSYS." The system is then stopped. Thus, the underlying aspects of
the system remain hidden from the user.

4"’Curveﬂtly, the address is an electronic mailing address.

51

3.2 The Database

This section is divided into two parts. The first one describes the structure of the
database and the indexes. The second one describes how the database is searched
using the indexes.

3.2.1 Database and Index Structures

As mentioned earlier, it was desired that the database access method, i.e., the
database structure and database search mechanism*', be simple and fast enough to
keep up with user requests. Moreover, it was desirable that the database access
time, i.e., the time to search the database and retrieve the desired record, be
relatively constant for all types of user requests. To meet this latter requirement, the
access method needed to facilitate both sequential and random accessing of
records, since the records are accessed sequentially when a next or previous screen
command is given, and a record is accessed randomly when the user types a name.
Then after a single record is accessed randomly, successive records are accessed
sequentially in order to fill the screen.

An indexed sequential access method meets the above requirements [52]. It consists
of a sequential file of records, ordered alphabetically by name, and several levels of
indexes (in :his case, three).

The first level of indexes, called the alphabetic pointers, logically divides the
database into alphabetic groups, groups of records that contain last names
beginning with the same letter. Thus, there are 26 entries, one for each letter of the
alphabet.

The second level of indexes, called the name index, logically partitions the alphabetic
groups into equally sized groups of records, called record blocks. (The optimal block
size is determined through performance testing and is discussed in the next chapter.)

“ The search mechanism is the algorithm lor accessing records in the database.

52

The beginning record in each block is used to form a name index entry by pairing its

record number with a substring of the name that it contains. The substring, which
must be unique, is formed by 1aking beginning characters from the name, which is
written as "last name,first name,middle name". A substring may be any length; it
need contain only enough characters to make it unique. Testing showed that for the
database being used, the substrings would usually be about four characters long.

The third level of indexes, called the record pointers, contains an entry for every
record in the database.*? It maps record numbers into physical addresses in the
database. The records are of variable length; therefore, a method for determining the
location of each record was needed.

The next section discusses how these indexes are used to locate a record in the
database.

3.2.2 Searching the Database

A record in the database is accessed by locating the appropriate alphabetic pointer
-- the one associated with the beginning letter of the sought after last name -- and
following the pointer to the name index. The name index is traversed sequentially
from that starting point until an index value, i.e., a name substring, is found that is
greater than or equal to the search name. The record associated with that index
entry is located in the database by using the record number in that entry and the
record pointers. The database then is searched sequentially from that starting point
until the desired record is located. The number of records that have to be searched
is always less than or equal to the number of records in a record block.

An example will illustrate this indexing scheme. Assume that the database and index
are as pictured in Figure 3-12 and that the user has typed "Babb" into the echo area.
The entry in the alphabetic pointers corresponding to "B" is located and is used as

42There are approximately 18,000 records in the database.

an offset into the name index. In Figure 3-12, the name index entry at this offset
contains the string "Baa" and the number 102. Successive name index strings are
compared with the typed string until an index string is found that is greater than or
equal to the typed string. To be "equal” means that the typed string is identical to
the index string or that it begins with the same characters that are in the index string.
An example in the next paragraph further explains this case. In this example, the
search of the name index ends at the entry containing the index string "Babe" and
the number 112. The typed string is now guaranteed to be between record number
107 and record number 112 since "Babb" is alphabetically between "Baba" and
"Babe"”. Record number 107 is chosen as the beginning point for a forward search
of the database. The first matching record will be positioned at the top margin of the
screen as discussed in the Section 3.1.2.

If the typed string is equal to an index string, i.e., is identical to an index string or
begins with the same characters that make up the index string, the method for
determining where to start searching in the database is a little different. If the user
had typed "Babee", for example, the search of the index again would have ended on
the index entry containing the string "Babe” and the number 112. This time, the
record could be between either 107 and 112 or between 112 or 117. It would be
between 107 and 112, for example, if record 112 contained the name "Babel”. It
would be between 112 and 117, for example, if record 112 contained the name,
"Babea"”. Therefore, the typed string must be compared to the full name in the
database that is associated with the index string. If the typed string is greater than the
full name, record 107 is chosen as the beginning point for a search of the database;
otherwise, record 112 is chosen.

database

Aaler, David

AbaSo A.

Abels, Robin

Baab, Jane

Babae, G.

Caab, Ken

alphabetic pointers name index record pointers
A Aa 1 1
8 Aba § 2
C Abe 10
D
5
z (Baa 102
Baba 107
Babe 112
Bac 117 10
Ca 180
Ce 185 102
107
Za 15004
180
f 185
}

Ceace, Ann

Figure 3-12:Sampie Database and indexes

@ i — Mee® e w m =

3.3 The Update File

As discussed earlier, users may submit update requests to the DIRSYS manager.
The manager then validates or invalidates the requests. The update daemon, or
daemon, is the program that runs at night to add the information in the requests to
the database. This section, divided into two parts, describes what happens to the
update requests from the time the user submits the requests until the requests are
added to the database. The first part of the section describes the update file
structure. The second part of the section describes the addition of the update
requests to the database.

3.3.1 Update File Structure

The update file is separate from the database. In this way, nothing is ever written into
the database that DIRSYS is using. Each update request that is submitted becomes a
record in the update file. The update record contains: the record number, the
current database record, the new information, the name of the person submitting the
update request‘a. the date that the request was submitted, a flag indicating whether
the request has been marked seen or unseen, the date that the request was marked
seen or unseen and the name of the person who did the marking, a flag indicating the
status of the request, i.e., valid, invalid, or waiting, the date when the status was
marked and the name of the person who did the marking. (See Figure 3-13.) When a
request is added to the update file, it is automatically marked as unseen and waiting
for verification. When the manager views the request in the update survey window or
update edit window (discussed in Section 3.1), he can mark the requests as seen or
unseen and valid, invalid, or waiting for verification.

43yt is essumed that an suthentication server can get this information.

100

Adams , Janet

wk addr: NE43-500

Adams, Janet

10-10-83

valid

10-10-83 | 10-10-83

A. Davis

A. Davig

ok

telephoned 10-11-83

record number

current database record

new information
name of person submitting request

date submitted

marked
date marked

name of person who marked request

comments

Figure 3-13: Sample Update Record

3.3.2 Adding Updates to the Database

The update daemon, which runs at night, removes the invalid requests from the
update file, rebuilds the database and indexes, incorporating the valid update
requests, and builds a new update file with the requests marked waiting. It also logs
the changes that it has made and sends the manager a message detailing the
transactions, if any, that took place.

The actual daemon procedure is as foliows. If there are any unseen requests, the
daemon notifies the manager via electronic mail. it then treats unseen requests as
waiting requests. in fact, most of the unseen requests will be marked waiting; an

-t Bl e - -

unseen request that is marked valid or invalid will be the exception.“ The daemon
then removes the invalid requests from the update file, copies them into the log, and
alphabetizes the remaining requests. Should a request contain new information for
the name field, then that request is alphabetized using the new name instead of the
old one. In this way, the new records will be in the correct alphabetical order in the
new database. (An example presented later in this section explains this case further.)

The daemon then checks for conflicting update requests, i.e., requests that contain
different information for the same field of a database record.* it marks any
conflicting update requests waiting, logs the conflict, and notifies the manager. The
daemon also checks for update requests that could be combined into one request.
For example, it consolidates update requests that contain new information for
different fields of a database record.

The daemon now is ready to rebuild the database and indexes. It reads a record from
the database and searches the update file for a valid update request that contains a
record that should precede the record that was just read.*® If such a request is
found, the new information in the request is combined with the database record
contained in the update request, and this new record is copied into the new
database.*’

Next, the daemon checks to see if the record that was just read from the database
should be copied into the new database by searching the update file for valid

“nmMMbMﬁMMaimw.memabMitmmh
validation process or left it marked unseen in order to be reminded of it, but forgot to mark it waiting. in
either case, the daemon waits for the requests to be correctly marked before acting on them.

451119 record numbers kept in the update requests facilitate locating requests for the same datsbese
record.

%muahmdmwblmmmbm

“Taetore copying new information Into the database record contained in the update record, the
daemon makes sure that that database record is identical to the corresponding record in the current
database.

Rt e e W e

e oy A B (o~ ren o iy

e —

- ’
ST G S

requests that contain that record number. If no matching record numbers are found,

then the database record apparently still contains up-to-date information and is
copied into the new database. If a valid request does contain a matching record
number, then the database record is not copied into the new database because it will
be replaced by a new record. If he request containing the matching record number
is marked waiting, then the record number in the update request is modified if
necessary, and the database record is copied into the update request and into the
new database.*® The waiting update request then is copied into a new update file.

The daemon keeps a table that maps old record numbers into new record numbers
so that records that were identified in the old database by record number can be
located in the new database. This table is used to modify record numbers in waiting
update requests and new update requests that are submitted while the update
procedure is in progress.

The daemon continues until the above procedure has been carried out for the last
record in the database. Then it repeats the process once more to take care of any
new records that should appear after the last record in the database. Finally, it sends
a message to the manager saying that the new database and indexes have been built.

The next morning, the manager reviews the messages from the daemon, tests the
new database to make sure DIRSYS can use it, and switches DIRSYS to the new
database. The update list associated with the old database is checked to see if any
update requests were added while the database was being rebuilt. If so, the new
update requests are added to the newly created update list, after modifying the
record numbers contained in them to reflect any changes in the order of the records
in the new database.*® DIRSYS is then told to use the new update file. Again, care

‘elfbothvaudand waiting requests exist for the same record number, then the new database record
containing the modifications in the valid update request is copied into the waiting update request.

“Snecords may be in a different order in the new database if records have been added or deleted or i
names in any of the records have been spelied differently.

must be taken to check for new update requests before switching over to the new

update file.

A sample update file and the pertinent part of the database before the daemon has
run are shown in Figure 3-14. The following example illustrates how a new database
and update file would be built. The new update file and pertinent part of the database
after the daemon has run are shown in Figure 3-15.

The update requests shown in Figure 3-14 have been alphabetized. Note that the
third update request involves changing the spelling of a name in such a way that the
record should appear in a new alphabetical location in the database. The request,
therefore, was alphabetized using the new name, "Adems, John", instead of the oid
one, "Adams, John".

The daemon starts the update procedure by reading a record from the database
-- record 100, "Adams, Janet". It does not find a record in the update file that should
precede that record, but does find a valid request to modify that record. The
“Adams, Janet" record, therefore, is not copied into the new database since a new
record for “Adams, Janet" will be copied into the new database in the next step. The
daemon next reads record 101, "Adams, John", and locates a valid update request
containing a record that should precede "Adams, John" in the database. This
update request contains the "Adams, Janet" record. The new "Adams, Janet"
record, formed by combining the new information with the database record
contained in the request, is copied into the new database. The daemon does not
copy the "Adams, John" record into the new database because there is a valid
request to modify that record. The daemon reads the next record in the database
-- record 102, "Adeison, David". There is no request that contains a record that
should precede "Adelson, David” since the change in spelling from "Adams" to
“Adems" causes the new "Adems, John" record to succeed the "Adeison, David"
record. The daemon then locates a request to modify the "Adeison, David" record,
but it is marked waiting, so the daemon copies the current record into the new

——

database, changes the record number in the waiting request from 102 to 101 to

reflect the new record order, and copies the waiting request into the new update file.
The daemon then reads record 103, "Ades, Katherine”, locates the update request
for a record that should precede that record, adds that record -- the "Adems, John"
record -- to the database, then adds the record for "Ades, Katherine”. The process
continues until the daemon has read all the records in the database and all the
requests in the update file and has copied the appropriate records into the new
database while at the same time rebuilding the indexes.

Database (part): Update File:
F======:4 #100
Adams, Janet Adam.s..- Janet
#100 wh addr: xxx wk addr: NE43-500

T seen | vaid
#101 %ﬁ
102
% Adelson, David
Adelson, David

#102 wk pt;Sne: XXX ' wk phone: 253-9008

seen l waiti
Ades, Katherine
#103 #1001
Adams, John

name: Adems, John
seen | valid

.

Figure 3-14: Sample Update File and Database Before Daemon Runs

61

Database (part):

#100

#101

#102

#103

Adams, Janet
wk addr: NE43-500

Adelson, David
wk phone: xxx

Adems, John

Ades, Katherine

]

New Update File:

==—_.=—-—=
#101
Adelson, David

wk phone: 253-9008
seen 1 waiting |

==

Figure 3-15: New Update File and Database After Daemon Runs

A o ERNRP

Chapter Four

Preliminary Evaluation

A preliminary evaluation of the interface and the database access method was made.
The evaluation included observing people use the system and taking timing
measurements on the database access method. The update daemon has not been
evaluated yet.

4.1 User Interface

The interface was evaluated informally by observing people use it, recording their
comments while using it, and asking them questions about it. Ten people were
observed, three of whom had had little or no computer experience. The other seven
were experienced computer users.

Starting DIRSYS

There were mixed reactions as to the usefulness of the herald screen. All the naive
computer users read it and said that they liked having an introductory screen that
told them how to get started and that listed useful commands. Three of the
experienced computer users read the herald; the remaining fo\ur preferred to start the
program immediately and to find out what commands did By trying them. One
experienced computer user suggested that it would be convenient to avoid the
herald screen if someone already knew how to use the system. One could type, for
example, "DIRSYS Smith, Jane", and the system would display the appropriate page
of the phone book with the closest matching record highlighted.”

501his option will be considered for the next version of the system.

63

Using the Commands

All users thought that the commands were easy to type. They seemed to have no
trouble with the <CTRL> or <ESC> keys, or with typing characters to search for a
name. The users were able to learn quickly how to use the commands. The naive
computer users thought the commands easy to remember because they are
mnemonic. Some of the experienced computer users found the commands difficult
to remember because the DIRSYS commands are similar to Emacs commands but
not identical. In Emacs, for example, users type CTRL-L to redisplay a screen, rather
than CTRL-R, and type CTRL-F to move forward a character instead of forward a
screen. They type CTRL-V to move forward a screen in Emacs.5'Thus, in the choice
of command abbreviation there is a tradeoff between the needs of naive computer
users, who often would like mnemonic commands, and the needs of experienced
computer users, who might prefer commands that are identical to commands in other
systems.

Only two users, both of whom are experienced computer users, used the CTRL-W
command. One other experienced computer user said that he thought the CTRL-W
command would be useful for an experienced DIRSYS user, but that first-time users
did not really need it since they could use the key or the CTRL-K command.
The users seemed to like having the CTRL-K command for clearing the echo area
because it was convenient, even though, as one user pointed out, it functioned in the
same way as repeatedly using the <DEI.> key.

Several users wanted more commands. One user suggested a command to specify a
department name as well as a personal name when searching for a record.
Consideration was given to including this feature in DIRSYS, but adding the option
was postponed in order to keep the input of search information simple. (Searching

51Perhaps DIRSYS could read an initialization file from the user's computer directory as Emacs does
and provide a default initialization for users who do not start DIRSYS from a system on which they have
adirectory. In this way, experienced users could rename the DIRSYS commands if they desired.

64

the directory using information besides personal names is discussed in Section 5.2.)
Two other users, both of whom are Emacs users, wanted a command that would
move the highlight to every fourth record. Such a command would be similar to the
Emacs CTRL-U command which causes the command that follows it to be repeated
four times.

Finally, the users were able to anticipate what a command would do in a different
contert, and they did not seem to be bothered by not having all commands available
in all contexts.

Looking Up a Name

All the users expressed a liking for the search screen layout. They thought that the
label window was necessary both to demarcate the main window and to give useful
information such as column headings. They reported that the echo area located at
the bottom of the screen close to the keyboard was helpful for keeping track of what

they had typed.

The users expressed a liking for an area set aside for system messages (the top line
of the status window) and for having it located near the echo area where they could
pay attention to information in both areas at the same time. They regarded the
system messages as informative and especially liked having a list of available
commands displayed. They appreciated being told that the system was still working
on a command if the command was not executed immediately and being told when
they had typed an unavailable command. One user suggested that error messages
remain on the screen until something was typed. Most other users thought that error
messages should disappear from the screen after the messages had been read. The
current scheme is a compromise -- error messages disappear as soon as the user
types something or after four seconds, whichever comes first. The messages were
more easily noticed when they were reverse videoed and accompanied by a ringing
of the terminal bell. Most users liked the terminal bell because it let them know that
the system was sending them a message. Two users found the bell annoying. Some

65

studies suggest that systems should avoid using the terminal bell because the users
might be embarrassed, thinking that the bell called attention to their mistakes [47].

All users were able to look up entries within minutes of starting DIRSYS. They
indicated that they liked searching for a name by simply typing characters and liked
the idea of highlighting the matching record. The reverse video was seen as an
improvement over highlighting without it. They also liked being able to move the
highlight manually. One suggestion dealing with the highlight was to use the
uppercase letters for highlighting only if the terminal did not have reverse video
capabilities. In this way, the names would be capitalized as people are used to
seeing them, with both uppercase and lowercase letters.

When DIRSYS is retrieving the new screenful of records, there is a delay of about
three seconds.52 This delay may be due to the sequential design of the program or
to the program’s spending an excessive amount of time reading and processing
records.3® Most users did not find the delay objectionable because the system sent
a message saying that it was searching for the desired record. It must be noted,
however, that the naive computer users did not know what kind of response time to
expect. In addition, the experienced computer users might have found the response
time more objectionable if they had not been accustomed to using interactive
systems on time-sharing machines.

The users found the delay objectionable, however, when DIRSYS displayed an
intermediate screen before it displayed the screen containing the desired record. If
the characters were not typed quickly, the system started searching for the record
that matched the first few characters that the user had typed (as an incremental
interface should). There was then a delay while the system retrieved and displayed

52The three second delay is for a terminal with 24 lines. The delay would be greater for a terminal
with a longer screen since more records would have to be retrieved to fill the screen.

53Further testing for the cause of this delay is outside the scope of this thesis since system response
time is good enough for a preliminary evaluation of the system.

68

rﬂ-“—-——__,p'

the intermediate screen. The characters that the user had typed while DIRSYS was
retrieving and displaying the records could not be echoed until the new screen of
é records had been displayed. People found this delay annoying because they could
not keep track of what characters had been typed. This problem became especially
bothersome when someone made a typing error and had to wait for the characters to
é _ appear before the mistake could be corrected.

The display of an intermediate screen was especially annoying when the user moved
the highlight and then typed characters. For example, if the highlight were placed on

"Johnson, D", and the user then typed "Johnson, J", depending on how fast the
characters were typed, the system might only get "Johns" before it started displaying
a new screen of entries. A previous page containing the first record matching
"Johns" would be displayed before the page containing the record matching
“Johnson, J". Most users found this display of a previous page foliowed by the
display of the correct page disconcerting. The same display behavior occurred when
deleting characters. If the highlight were on, "Johnson, D", and the user deleted
"D", and then typed "J", DIRSYS might display the screen containing the first record
matching "Johnson,” before displaying the screen containing the record matching
"Johnson, J".

Most users liked the fact that deleting the last character from the echo area did not
cause the highlight to move. All of the naive computer users expected the highlight
to remain where it was. Most of the experienced computer users expected the
highlight to go back to the previously highlighted entry because of the way that the
Emacs incremental search facility works, but most also said that they would rather
have the highlight remain where it was. One thought it would go back to the
beginning of the database.

Because of the display delays, it is difficult to say whether or not the incremental
interface is a good interface for this directory system. If the redisplay were faster or

could be interrupted as in Emacs so that the echoing of characters could be

immediate, then the intermediate screen display might not be annoying.“Altemately,

the system could wait until the user had finished typing characters before displaying
the appropriate page of the directory in order to decrease the flashing of the screen.
The interface then, however, would not appear to be incremental. All of the naive
computer users expressed a preierence for a system that would search only when
they told it to. One said that he was not in control of the system, that the computer
was in control when it searched for the matching record as he typed characters.
(Perhaps if the system response time had been better then he might have felt more in
control.) The experienced computer users are more familiar with incremental
searching, since many full-screen editors use it, and most of them liked the idea of
using it to search the directory.

Getting Help

All three naive computer users read the tutorial and thought it was well worded. One
thought that it was too long. Another pointed out that he felt as if he had to
remember all the terms defined in the tutorial, e.g., "echo area"”, to be able to use the
system. This point is a good one; the tutorial could be rewritten without using
specific terms. None of the experienced computer users read the tutorial, but they all
thought that it was helpful to have it for those who wanted to read about the system
before experimenting with commands.

All users typed the help command ("?") at least twice, and, as expected, the novices
used the help facility more often than the experienced computer users. The users
thought that the help facility was useful, well worded, and easy to understand. They
were able to understand that a command typed from the first level help window would
be executed in the previous window. There were mixed reactions, however, to what
occurred after typing CTRL-T or ESC-M from the help window. When one of these
commands was typed, the directory data window was redisplayed before the tutorial

54ln Emacs, when the user types a character or command, any screen display that i8 in progress is
interrupted while the user's input is processed.

or update request windows were displayed in an attempt to let the user know that he

would return to the directory data window after exiting the tutorial or update facility.
Some users thought that the redisplay of the directory data window caused
unnecessary delay and screen flashing. Others did not mind the redisplay, but were
not sure that it helped them figure out what window would be redisplayed when they
exited the tutorial or update request windows. An interface without redisplay of the
directory data window should be implemented so that users can compare the two
designs.

The users liked having two levels of help and did not seem to mind having to return to
the first help level before being able to execute commands in the window that was
present before entering the help facility. The users found the command prompt for
the second level help window that appears in the echo area helpful but thought that it
was difficult to notice unless it was reverse videoed. One user said that a more
detailed explanation level would be helpful. He had overlooked the explanation of
the second level help because the explanation was not in the same format as the
other commands; it was written as a statement near the bottom of the help window.%

Requesting an Update

Most of the users submitted an update request and thought that the update facility
was easy to use.56 They thought it convenient to be able to send changes directly to
the DIRSYS manager. They understood that they were submitting requests for
modification rather than modifying the directory database and understood that the
requests would be verified by the manager.

5516 command will be explained differently in a new version of the interface.

mrhe information in the database is not up-to-date so most users submitted new information for their
directory entries.

4.2 Database Access Method

Preliminary timings were taken to discover how record block size affects the

database access time and to determine an optimal record block size.5” A random
sample of 200 names was chosen from the database. Each name was located in the
database using the indexing scheme discussed in Section 3.2, and the following
quantities were counted: the number of disk accesses while searching the index, the
number of disk accesses while searching the database, the central processor time
while searching the index, and the central processor time while searching the
database.’® The disk accesses counted, however, might not have been actual
physical disk accesses because the counting process did not take into account the
possibility that the operating system might have had the desired information cached

in memory. The timed searches were repeated on two other files of sample names
that had been constructed by randomly reordering the names in the first sample file.
The timed quantities for the three files were then averaged.

The above procedure was carried out using indexes that had been constructed for
record block sizes ranging from 5 t0 100 in increments of 5. The searches using the
20 indexes were then repeated for internal buffer sizes ranging from 128 to 2048
words.

It was predicted that 30 would be a suitable record block size based on statistics that]

indicated that block sizes larger than 25 resulted in a significant decrease in the

| average number of characters needed for unique index entries. A relatively small
index was judged to be desirable in order to minimize the number of disk accesses
required to search the index. In addition, calculations with disk access time and
average record size indicated that reading a maximum of 30 records before locating
the desired entry would keep the response time acceptable.

57As mentioned in Section 3.2, the name index logically partitions the groups of records containing
last names with the same first letter into equally sized groups of records, called record blocks.

58niRsYS is implemented on a DEC-SYSTEM 20 running the TOPS-20 and on a VAX 11/750 running

UNIX. The timings were taken or the DEC-SYSTEM 20 because it had a higher resolution timer than the
VAX 11/750. .

70

N N e .

Resuits of the timing process are shown in Figures 4-1 and 4-2 and in Appendix
B. The graphs of disk accesses versus record block size, one of which is shown in
Figure 4-1, seem to indicate that for record block sizes larger than about 20, the
number of disk accesses required to read the index is relatively constant at
approximately two per search. The increase in disk accesses below about 20 is due
to a large index. It takes more disk accesses to read the index, and with more index
entries, the probably of having an index entry that matches the search name
increases, in which case, a record is read from the database to determine whether
the desired record is before or after that particular record in the database.5® Most
disk accesses for record block sizes larger than about 20 are due to reading records
from the database, as expected. Also as expected, the larger the buffer size, the
fewer average number of disk accesses required to read the database since more
information is kept in memory. However, this decrease in disk accesses is only
beneficial when doing many searches in a row or when moving to the next or
previous page in the directory. If the user only wants to look up one name, reading in
a lot of extra information, and causing the user to wait, is unnecessary.

The graphs of central processor time versus record block size, one of which is shown
in Figure 4-2, indicate that the system spends very little time searching the index.
Most of its time is spent reading and processing the records of information. The
increase in central processor time below a record block size of about 20 is due to
having to search a large index. This search time probably could be decreased if the
index were not searched sequentially. As expected, the central processor time
seems to be independent of internal buffer size.

The results of the database timings indicate that for record block sizes above 20 the
index is small enough to be searched quickly. Additional testing is needed to
determine an optimal internal buffer size.

“mmmmummmmaz

n

il mea o

Disk Accesses

1800

1000

L L v A L v Ll v AJ
Disk Accesses
*
+ total .
¢ while searching databdbase *
+ |9 while searching index +
*
. ¢ + e -]
]
e *
. * o Q
b L J * o
L * o a o
a ©
o ©O
- n e e
8 o °
R
°
-
®
- . .
o o
LA K T A S U I * .
1 - 2 . r'y ek 'l 4 d
0 20 40 o0 80 100
Record Block Size (# of records)
L]
for 200 names

Figure 4-1: Disk Accesses vs. Record Block Size, Buffer Size 128

—— Al s o

~ ey

o LA b W

(secs)

Central Processor Time

'o R RN R L v v i 1 L] Ll

Central Processor Time

s + total
¢ while searching database 3
O while searching index 5
4
SR T

(- R J

‘ﬁ
o+

*
-]
*
0 -
o
<+
o
’Q
D
- [
+ 3
¢+ 0O
“ o
20 r s O
’0
o
[

10 F
P
[J
0 :°f°?°?°10909090909
0 20 40 60 80 100
Record Block Size (# of records)
° for 200 names

" Figure 4-2: Central Processor Time va. Record Block Size, Buffer Size 128

Chapter Five

Conclusions and Future Work

5.1 Conclusions

This thesis has described the design and implementation of an online directory
assistance system called DIRSYS. The system, designed for use by members of the
M.I.T. community, has an incremental interface that combines features of a paper
phone book with those of a full-screen editor such as Emacs [51). Each directory
entry is displayed in a compact one line per entry format, as are entries in a paper
phone book. Since more information is available for each entry than in a paper
phone book, a command is available for changing entries into a more expanded
format in which additional information is displayed.

Users may "browse" through this electronic phone book by issuing commands
similar to Emacs’ cursor motion commands, or they may search for a specific name
by typing the name. After each letter that the user types, DIRSYS moves the
highlight, the means for emphasizing an entry, to the entry whose name string most
closely matches what the user has typed so far. This incremental search mechanism
is similar to that used in Emacs. The system provides a help facility with two levels:
the first level reminds users of which commands are available; the second level
describes the function of a specified command in detail. A tutorial is available for
users who want a very detailed description of the system.

Finally, DIRSYS provides a facility for keeping the information in the directory
database up-to-date. A user may submit update requests, which contain information
about modifications to his directory entry, to the DIRSYS manager. When the update
requests have been validated, the information contained in them is incorporated into
the directory database by an update daemon, a program that runs every night to
update the database.

74

A preliminary evaluation of DIRSYS indicates that the system can be used easily by
both inexperienced and experienced computer users. Details of the evaluation were
presented in Chapter 4. The learning aids guide the novice without encumbering the
experienced user. The commands are simple, easy to use, and consistently
interpreted. The system provides prompts and polite, informative messages to the
user. It also is robust in that it is very difficult to cause DIRSYS to fail to operate.
Finally, individuals who used DIRSYS seemed to enjoy using the system, even though
the system response was slow at times, and agreed that a directory systein such as
DIRSYS would provide a convenient service for use both inside and outside the M.L.T.
community.

5.2 Future Work

This section is divided into two parts. The first describes work that could be done on
the current system; the second describes possible extensions to the current system.

5.2.1 Work on the Current System

Quantitative Evaluation

DIRSYS was designed to be easy to learn to use and easy to use once it had been
learned. The preliminary evaluation indicates that these goals were met; still a more
thorough quantitative evaluation is needed. Moreover, the evaluation should include
experienced DIRSYS users.

Ease of learning is often measured by determining the average time required for
people to learn to use a system. An alternative would be to measure the percentage
of people who could learn to use a system in a given period of time. In testing for
ease of leaming, it is important to define what is meant by "to learn to use the
system”. The phrase could mean being able to do basic tasks, but not necessarily
quickly; it could mean being able to perform basic tasks quickly; it could mean being
able to do basic tasks quickly and some advanced tasks; it could mean being able to

75

perform both basic and advanced tasks quickly. It is also necessary to identify the
basic and advanced tasks. With DIRSYS, for example, submitting an update might be
considered an advanced task.

Ease of use can be measured by determining the speed with which a person can use
a system, e.g., by finding the average time required to complete a task or the
percentage of a task completed within a given time period. Alternatively, one could
measure ease of use by counting the number of errors that a person makes while
using the system. There is evidence to suggest that the fewer the number of errors,
the easier the system is to use [28]. With DIRSYS, however, it would be ditficult to
determine when users made errors, especially since users often may experiment with
commands. In testing for ease of use it is important to distinguish between
inexperienced and experienced computer users, because knowledge of computers is
being tested as well as knowledge of the system. Collecting statistics about user
sessions, e.g., keeping track of everything a user types, would also help determine
which commands people find most useful. Unfortunately, only statistics for
experienced computer users can be collected now since inexperienced computer
users currently do not have easy access to the system.

In addition to measuring ease of learning and ease of use, it would be interesting to
measure user attitudes toward DIRSYS. There is an abundance of literature on
attitude measurement [11, 22, 29, 41, 54]. One method that has been successfully
used for evaluating attitudes toward computer systems is the semantic differential
technique [15, 18, 31, 50). This technique measures people’s reactions to various
concepts in terms of ratings on bipolar, seven-step scales defined at their extremes
by contrasting adjectives. A typical semantic differential looks like:

@Sy~ ~ = =lm = - mlmm e mlm— = == == =l= = = == = — = difficult.

The seven positions on the scale correspond to (from left to right) extremely easy,
quite easy, slightly easy, equally easy and difficult, slightly difficult, quite difficult, and
extremely difficult. The subject is asked to evaluate a concept, e.g., using DIRSYS,

76

by placing a check mark on one of the positions on the scale. The collected data can

then be analyzed mathematically by assigning values of 1 to 7 or 3 to -3 to the scale.

in addition, the database access method needs to be evaluated further. it would be
useful to find out how the operating system on which DIRSYS runs affects system
performance. The operating system'’s paging scheme may prevent requests for new
information from being actual physical disk accesses because the operating system
may have the desired information cached in memory. It would also be interesting to
see how much of a performance difference alternate database organizations would
make.

Finally, the update procedure has not been tested yet. The update daemon takes
about three hours to rebuild the database and indexes on a dedicated VAX 11/750
running the UNIX operating system. Statistics need to be taken to determine how the
rebuild procedure affects response time if DIRSYS is being used at the same time
that the database is being rebuilt. 1t also would be useful to know how often update
requests were received in order to determine whether or not updating the database
once every 24 hours is appropriate. It would be interesting to compare the current
update procedure with one that did not rebuild the entire database. One possible
design would be to organize the database as several files and rebuild only the files
that were affected by the updates. This scheme would be more efficient than
rebuilding the entire database if the percentage of files that have to be rebuilt is
small. Having the database organized as multiple files, however, might introduce
delays in reading and displaying the records for the incremental interface.

Improved Performance

The performance of DIRSYS needs to be improved by eliminating the delay when the
system retrieves and displays records. The cause of the delay needs to be identified
by determining exactly where in the program the time is being spent. As noted in
Chapter 4, the delay may be due to the sequential design of the program or to the
program’'s spending an excessive amount of time reading and processing records.

7

e et D

e

One solution might be to allow display to be interrupted when another command or
character is waiting to be processed. Another possible cause of delay may be that
DIRSYS relies on screen handling routines in the implementation language library
rather than updating the screen itself.50 Thus, further investigation of system
performance is needed.

Improved Methods for Building and Maintaining the Database

In order for DIRSYS to be a usable service, a convenient way to set up the database
is needed. Currently it is difficult to transform the information from the registrar's and
personnel offices into a directory database. The process involves reading and
merging the information from magnetic tapes, editing it to remove format
inconsistencies, merging it with electronic mail address information, and converting
it into a more compact format. An automatic way of getting the directory information
in a convenient format is needed. ldeally, the registrar's and personnel offices would
keep directory information in similar formats, including electronic mail address
information, and would send it over a data line that connected those offices to the
directory system. The directory system then could update its directory database with
the new information. With this plan, it also would be possibie to send copies of the
validated update requests for DIRSYS to the registrar's and personnel offices in
order for their records to be kept up-to-date as well.

5.2.2 Extensions to the Current System
Running DIRSYS on Multiple Machines

DIRSYS is designed to run on a single dedicated computer to which users connect in
order to run the system. Alternately, DIRSYS could run on more than one computer.
The availability of the service would be increased with such a plan since if something
went wrong with one machine, the other machine(s) could continue to operate the

80niRsYS is implemented in CLU [30).

i T . R A DR nan sl . e

system. In addition, the system load could be distributed. When a user types
"DIRSYS" to start the system, a program on the user's machine could find the
DIRSYS machine with the least number of users, set up a connection to that
machine, and start DIRSYS on it. By distributing the load, one machine could do the
updating of the database while the other machine(s) continued to provide the
directory service. The machine doing the updating would be assigned fewer users
than the others in order to keep system response fast on that machine. It one
machine were to be taken offline to update the database, then a different update
scheme could be employed since not writing directly into the database would no
longer be a requirement. (In the current scheme, as discussed in Chapter 2, in order
not to "disturb" the database that DIRSYS is using, a new database is built by
copying the old database and merging update information into it.)

Finally, if DIRSYS were running on more than one machine, the update requests
would have to be propagated to the update files kept on each machine. In addition,
the update program would have {0 make sure that there were no inconsistencies in
the update files when it began to rebuild the database. Care also would need to be
taken when copying the new database and new update file to the machines. Any
update requests that had been submitted while the database was being updated
would need to be added to the new update file.8"

The above scheme assumes that all the processing, e.g., screen handling and
database searching, is done on the dedicated machines. An alternate plan is to
distribute the processing involved in running DIRSYS between central machines and
user sites. For example, copies of the database could be kept on several central
machines, and the screen handling and input processing routines could be kept on
personal computers connected to the machines via a network.82 The centralized

61 The record numbers in the new update requests might have modified, as discussed n Section
33.2.

62This plan assumes that th> network would have a high enough bandwidth to handie the data
trangter.

-t e BT TS M Sea—n— e T T S TS Ty

machines would not need to be dedicated to running only DIRSYS since all
processing wauld be done elsewhere. Expanding the system to be able to serve
more users would not require adding another centralized machine, only another copy
of the database. The system could be accessed from personal computers distributed
throughout the M.L.T. community. In addition, users could obtain a copy of the
DIRSYS program and run the system on their own machines.

More Sophisticated Matching Schemes

There are several sophisticated name matching schemes that could be added to the
system in order to facilitate locating a desired record. These alternate matching
schemes become especially important if the desired record is not found using the
incremental search. These features could be provided as separate commands or as
one command that automatically searches using all of the alternate matching
schemes. The alternate matching schemes could include the following. The system
could match first names and nicknames by searching a table of common nicknames.
It could search for records containing names that matched the typed first, middle,
and last names and initials in any order. For example, the record for someone who
goes by "Ann Smith" might be listed in the directory database under the name
"Karen Ann Smith". In this case, if DIRSYS were to search the database looking for
"Ann" as the middle name instead of the first name, the desired record would be
located. The system could provide a phonetic search facility that would locate
records containing names that "sound like" the typed name. Names could be
encoded in such a way that similar sounding names have the same code. One such
encoding method is the Soundex method, developed by Margaret K. Odel and Robert
C. Russell.%3

One possible way in which the alternate matching schemes could be used is the -
following. if after typing a name, a matching record is not found by means of

63U.S. Patents 1261167 (1918), 1435663 (1922). Cited by [28].

80

incremental search, the user could issue a PHONETIC SEARCH command which
would cause records to be displayed containing names that phonetically match the
typed name. The information would be displayed in compressed format as with the
incremental search screen, and all commands available with the incremental search
screen would be available with the phonetic search screen. The phonetic search
facility could be "turned off" automatically when a new search is started or by issuing
a specific command. Thus, adding alternate matching schemes to DIRSYS would
not necessarily require drastic changes in the interface design.

Other matching schemes that could be added include matching records using fields
of information besides personal name. [If someone is looking for the directory entry
for John Smith who is in the Department of Psychology, for example, being able to
input the department information as well as the personal name might shorten the list
of matching entries. A simple way to input the department information would be
needed. In one such scheme, a list of numerical department abbreviations could be
displayed on a section of the screen, and the user could type the department number
instead of the department name. This scheme shortens typing time and gets rid of
the need for sophisticated methods of interpreting user input. The user could type
the department number, then start typing a name. There would be no confusion
about what part of the user's input was department information since personal names
do not contain numbers. Indexing the database by department as well as by personal
names might facilitate locating and displaying matching records quickly.

A Mouse Interface

Many current systems have interfaces that employ a mouse, a small mechanical
device which, when moved around on a flat surface such as a desk top, moves a
pointer on a termina! screen. A mouse often has one or more buttons on its top or
side for selecting options, e.g., for issuing commands. One such interface has been
designed for DIRSYS and is summarized briefly here [24].

With this DIRSYS interface, the pointer on the screen that moves when the mouse is

81

Name.....ooovievnnvenns «+s.Hm Phone..... MIT oext....Dept.........co0vvens Status

allen, larry, w 646-3080 ... 3-6020 ... lab for computer sci ..staf
baldwin, robert, w 494-8490 3-6020 elec eng & comp sci g
berlin, stephen, t 3-1448 lab for computer sci staf
bridgham, david, a 225-6683 1985
comfort, sarah 3-6002 lab for computer sci staf
HELP SWITCH-FORMAT KILL-SEARCH QUIT EXIT-SCREEN

TUTORIAL REDISPLAY MODIFY-ENTRY ALTERNATE-MATCH-SCHEMES

gifford, david k 3-6039 elec eng & comp sci fac
gramtich, wayne, ¢ 494-1076 3-6042 elec eng & comp sci g
greenwald, michael, b 497-0472 3-6042 lab for computer sci staf
harteneck, ralf 494-9833 3-6020 elec eng & comp sci 1984
hopkins, grace 3-6042 elec eng & comp sci 1984
hornig, charles 3-7788 elec eng & comp sci 1983

A B C DEF G HIJ K L M N O PQR S T UVW XY 2

- e - = . e e S e e = e = = s o . e - e -

Name (last,first.middle):

Figure 5-1: Sample Search Screen for Mouse Interface

moved is the highlight. To highlight an entry on the screen, the mouse is moved until
the highlight rests on that entry. To display the next or previous page of entries, the
mouse is moved so that the highlight reaches the bottom or top, respectively, of the
directory data window. "Clicking" one of the buttons on the mouse causes a pop-up
window to appear wherever the highlight is located. The pop-up window contains a
list of available commands. (See Figure 5-1). To issue one of the commands, the
highlight is moved to the desired command and a button on the mouse is clicked.
Only the command name would be highlighted, not the entire line containing the
command. Depending on how many buttons the mouse has, frequently used
commands, such as EXIT SCREEN and SWITCH FORMAT, could be executed by
clicking different buttons on the mouse. To begin an incremental search, the user
could either type the name into the echo area or move the highlight to a position on a
bar graph representing the distribution of alphabetic groups in the database. The bar
graph could be displayed, for example, on the right-hand-side or at the bottom of the
screen, as shown in Figure 5-1. The graph would be labeled as a dictionary is

82

’ II.M» -

labeled, with letters proportionally spaced out along the graph to indicate where the
last names beginning with those letters are located in the directory. In order to locate
the record for John Smith, for example, the user could place the mouse pointer half
way between the "S" and the "T" on the graph and click the mouse button. A little
trial and error might be needed to find the exact location of the Smith records.

An Interface for Qutside M.I1.T.

A non-incremental interface for use outside the M.I.T. community can be designed in
such a way as to enforce the Institutes’ privacy policy. (As mentioned in Chapter 2,
the privacy policy states that the phone book is not to be made putlicly available,
especially for commercial purposes.) The incremental DIRSYS interface can be
modified to restrict the number of directory entries that users outside the M.IL.T.
community may view. One method for achieving this restriction would be for DIRSYS
to display entries only if the non-M.I.T. user has completed typing the name and hit
an <ENTER> key and only if the number of matching entries is less than a certain
number. That number would be the maximum number of records that someone
outside the M.L.T. community would be allowed to view and would be set by
individuals at M.I.T. who determine the privacy policy. If there are more matching
records than can be displayed, the system could ask the user to input more
information, or it could ask the user a specific question about information that would
distinguish the records. It might ask, for example, if the person whose name the user
had typed is a student or a member of the faculty or staff, or it might list the
department names contained in the matching entries and ask the user with which
department the person is associated.

Implementing an interface for use outside M.l.T. would require a reliable means of
distinguishing M.I.T. users from non-M.l.T. users. There are currently several ways to
make this distinction, each of which exhibits a tradeoff between security and
convenience. The system could keep a list of authorized M.I.T. users and require

those users to input a personal password when starting DIRSYS. Aiternately, the

system could operate on the assumption that anyone who has access to an M.L.T.

computer is an authorized M...T. user.®4

This second scheme would be more
convenient for the users, but would not allow as much control over who used the

M.L.T. interface to the system,
A Mailer Interface

Another interface that could be added to DIRSYS is an interface for a mailer. This
interface would simplify the sending of electronic mail by allowing someone to send a
message addressed using only a personal name and the name of the Institute. One
could send a message, for example, addressed to "Jane Anderson at MIT", and the
mailer would look up Jane Anderson in the directory database, find her electronic
mail address, and forward the message to that address. In order to provide this mail
forwarding service, the mailer must be able to identify a unique recipient name before
sending mail. If a user were to send mail to a person at M.L.T. using a name that did
not match exactly a name in the M.|.T. database, the system could behave in one of
several ways. It could refuse to send the mail and instead send the user a message
which would include information about the closest possible match (or matches) and
a request to use the exact name listed in the entry (or one of the entries) to resend
the mail. If the name could be inexactly matched with one of the entries in the
database, e.g., using a nickname, the system could send the mail to the associated
electronic mail address and send the user a messege giving the person’s name as
listed in the database entry, requesting that future mail be sent using that name. A
person not listed in the database would still be able to receive mail, but the sender
would have to know the recipient's electronic mail address rather than relying on the
forwarding service to respond to the person’s name.

©4An M.1.T. computer can be identified by its network address.

84

e s e DS

[

Yellow Pages

A useful addition to the directory assistance service would be a "yellow pages"
section for Institute information. To provide a good "yellow pages” service requires
more than looking for an entry that matches exactly what the user has typed. A
sophisticated indexing scheme is needed that would enable information to be located
when asked for by a name different from the one given in the directory. For example,
the system should be able to locate an entry for the Health Center even though in the
directory listing it is called the Medical Department. Also needed is a way for users to
"browse" through the information since they may not know what information they are
looking for, but might recognize it if they saw it.

Except for its slow performance, DIRSYS is usable and robust. The only other effort
needed to put the system into service is to improve the method for huilding and
maintaining the database. While the present design and implementation are

complete, the features suggested here may be valuable additions for improvement.

T R ey L PR e e e = T

Appendix A

Glossary of Terms

The following is a glossary of terms that are used in this thesis.

Access method: The database structure, i.e., the physical storage structure, and
the search mechanism, i.e., the algorithm for accessing records in the database.

Access time: The time to search a database and retrieve the desired record.

Alphabetic groups: Groups of database records that contain last names beginning
with the same letter.

Alphabetic pointers: The first of DIRSYS' three levels indexes. The alphabetic
pointers logically divide the database into alphabetic groups.

Directory data window: In DIRSYS, the window in the center of the screen,
between the label and status windows, that contains directory information in
compressed or expanded format. it is also called the data window.

DIRSYS: The name of the directory system. (The name is derived from DIRectory
SYStem.)

DIRSYS manager: The person in charge of maintaining DIRSYS, including
validating and marking update requests.

Echo area: In DIRSYS, this is the bottom-most window and the last line on the
physical screen. When the user types characters, they are shown in this window.

Help window: In DIRSYS, the temporary window that appears when the user types
*?". The first level help window contains an explanation of the available commands;

the second level help window contains a detailed explanation of a specified

command.

Herald: The first screen displayed when DIRSYS is started. It contains a brief
description of what the system does and how to start using it and a list of commands
needed by the first-time user, along with the functions of those commands. It also
gives an address to which users may send comments.

Highlight: The means by which DIRSYS emphasizes an entry on the screen. A
highlighted entry is displayed in reverse video if the terminal has that capability and in
uppercase letters with periods between the fields of information.

Incremental search: When a system begins searching for a matching string after
each character typed by the user.

indexed sequential access method: A database access method that consists of a
sequential file of ordered records and an ordered index, or several levels of ordered
indexes, for accessing those records.

Label window: In DIRSYS, this is the top-most line on the physical screen. It is
shown in reverse video if the terminal has that capability and generally contains
information about the window directly below it.

Mark an update: The operation done by the DIRSYS manager to indicate whether
an update request is seen or unseen and valid, invalid, or waiting for verification.

Name index: The second of DIRSYS’ three levels of indexes. It logically partitions
the alphabetic groups in the database into equally sized groups of records, callied
record blocks. The beginning record in each block is used to form a name index
entry by pairing its record number with a substring of the name that it contains.

Non-incremental search: When a system begins searching for a matching string
after the user has typed the complete string.

87

Pop-up window: A window that appears when the user issues a command, e.g., a

help command, and disappears when the user begins typing again.
Record blocks: Equally sized groups of database records.

Record pointers: The third of DIRSYS' three levels of indexes. The record pointers
contain an entry for every record in the database and map record numbers into
physical addresses.

Status window: In DIRSYS, this window is located directly above the echo area and
consists of two lines, both of which are shown in reverse video if the terminal has that
capability. The upper line is used for sending messages to the user; the lower line is
used for listing available commands.

Survey updates: The operation available to the DIRSYS manager for viewing the
update requests that have been submitted.

Tutorial window: In DIRSYS, the window that replaces the directory data window
when CTRL-T is typed. it contains the text of the tutorial.

Update daemon: The program that runs at night to add information in the update
requests to the DIRSYS database.

Update edit window: The window that is used by the manager to edit and mark an
update request.

Update request window: In DIRSYS, the window that replaces the data directory
window when ESC-M is typed and contains a directory entry to be modified. An
update request is submitted by typing CTRL-U.

Update request: A message that a user sends to the DIRSYS manager requesting
that his entry in the DIRSYS database be modified.

Update status: The status of an update request, i.e., whether it is valid, invalid, or
waiting for verification.

Update survey window: The window that is used by the manager to view and mark
update requests in compressed or expanded format.

Window: A rectangular area on a physical video screen.

Appendix B

Performance Graphs

The foliowing graphs, discussed in Section 4.2, are the results of preliminary timings
that were taken to discover how record block size affects the dalabase access time
and to determine an optimal block size. A random sample of 200 names was chosen
from the database. Each name was located in the database using the indexing
scheme discussed in Section 3.2, and the following quantities were counted for
several internal buffer sizes: the number of disk accesses while searching the index,
the number of disk accesses while searching the database, the central processor
time while searching the index, and the central processor time while searching the
database. (The disk accesses counted, however, might not have been actual
physical disk accesses because the counting process did not take into account the
possibility that the operating system might have had the desired information cached
in memory.)

The graphs indicate that for record block sizes above 20 the index is small enough to
be searched quickly. Additional testing is needed to determine an optimal internal
buffer size. (See Section 4.2 for a more detailed discussion of the timings.)

Disk Accesses

3000

2500

2000

1500

1000

T

LS

T T T A Ll T A v

Disk Accesses

+ total
. + . +
© while searching database
-
F + |9 while searching index +
+
+ * + ° =]
. o O
#’ a
. o+ o
+
+ o
+
[* o © °
I o °
nn
o
- o e
9 o
-
°
| °
© °°
© ° o & 0 o L, 0 0 o o © o
-
Il A L - il 'l - A L il
0 20 40 60 80 100

Record Block Size (# of records)

* for 200 names

Figure B-1: Disk Accesses vs. Record Block Size, Buffer Size 128

91

4
3000
2500
2000
.
%
3
< 1500
x
2
(=]
1000
600

[+ tota)

L Il T L) L T L

Disk Accesses

¢ while searching database

Record Block Size (# of records)

° for 200 names

i 0 while searching index
L
*
R
L +*
" *
<+
e e +
+ +
+ * * + + +
s -]
o [
-]
0 o
3 o o -]
a -] c -]
o o
o o
r
*
[¢ . .
L ° L L)
o O o o o * o .
L
ok 1 4 1 i A 4 L -
0 20 40 80 80 100

Figure B-2: Disk Accesses vs. Record Block Size, Buffer Size 256

S e i =

Disk Accesses

3000

2500

2000

1500

1000

T -
- 4
T R T v T T L T v 1
Disk Accesses
+ tota?
© while searching database
O while searching index h
- -4
[‘
. l
*
o + . . et .t o *
B + . e . + h
S o -
o 0 p o -]
0 0o o o [-] 9 o °© e
0 B8 p o J
P e
o ¢ ® o °
L4 e © o o © o ° O o o © o
o -
L A 3 e L A Y i Y A
0 20 40 80 80 100

Record Block Size (# of records)

" for 200 names

Figure B-3: Disk Accesses vs. Record Block Size, Butter Size 512

,«"AD-AMO 821 THE DESIGN AND IMPLEMENTATION OF AN ONLINE DIRECTORY 1/2
ASSISTANCE SYSTEM{U)} MASSACHUSETTS INST OF TECH
CAMBRIDGE LAB FOR COMPUTER SCIENCE. K KOILE DEC 83
UNCLASSIFIED MIT/LCS/TR-313 N00014-75-C-0661 F/G 9/2

END
&t

) m 2.9 Y
oy -
——— E €1 nE :;,:
L, B
s =
= m 1.8
g .
(B TEY TP
= IS E :

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

3000 L L L) L L LS . i L] L]
; Disk Accesses
:] + total 1
r ® while searching datadbase
; 2500 P O while searching index T i
¥
9 b -
2000 P o
L]
§ L ‘
O
i 2 !l . j
¥
3 o b -
1000 f © * -
LY *
. (e * o « *t e * o ¢ 4 o * . J i
-] o i
800) -] o i
. . ¢ ® 0 o e] i
| R L L AR |
v o - l’
; 1
!
° . —ds s —d, g g 1 _p A ;
] 20 o 80 1) 100 ;
Record Block Size (# of records) ;
; * for 200 names i
; Figure B-4: Disk Accesses vs. Record Block Size, Buffer Size 1024 j

’ooo Ll v L] L] v L v v
Disk Accesses
I + total
* while searching database
2500 L O while searching inden
i
2000 P
1800 | 1 ‘
F | 4
000 f ® * o]
- L 4 *
- .
¢ L * L 2 L * *
- * ¢ 4 e * . . . 1
:]
t]
.‘* 800 P . o 8 o 4
L 3 ® ®
j‘ ..3.8'.:.....
3
; ' & A e A P N A A A A 'y
; ‘ 0 20 . @] (] 100
1 Record Block Size (# of records)
* for 200 names
1\ .
Figure B-5: Disk Accesses vs. Record Block Size, Bufier Siae 3048 :
{

'o L 2 L] L v v v A T L LA
Central Processor Time
o + tots) 1
¢ while searching database . 3
’ O while searching index 8
LU o * a -
¢ ° s
']
i | , .
S]
&
.]
é U ° -
. 8
]
s 8
S " 1
Py *
o 8 e !
g i : e)
8 20 e *t ¢
e ?
[» .
LI "
9 -
o
* o
. N ® & 6 9 0 9 0 9 0 9 O 9 o 9 & o

[)
] » L] [] (] 19 . i
Record Block Size (# of recorde)

for 300 names

.. L] L] L4 La L]

Centra) Processor Time

o ¢+ total

® while searching database
S while searching tnder

“b
i 1
[]
éu# . s
[-]
&
> ..
* ,0..
20 b *+ g ® : - 3
.'
! -
» o
3 -
*®
o .
. . % % 6 0 490909 0 90 9 0.4 0 o
0 2 ® (™ ™ 100
Record Block Bize (# of records) .
° for 500 names

Pigere 5-7: Coniral Proosesor Tims va. Aucord Biock Sie, Buller Stae 558

&

2

.

!

| 80 ' r e e —

i Central Processor Time

. + total
= ¢ while searching database
g B while searching tades
~ ©

(- X 4

v
(- 24
o4

*
0e
[X 2

-
2 p *] <

z
Central Processor Time~ (secs)
oe
[. £)
0
[- R 3
[- X 2

f‘.!
.S‘q
¥,
H 0 b d .
) S y
,; .
® o :
. L2 % % 0909 0.9 0 490 40 40
(] 2" o " 00 100
. Record Biock Size (# of records)
4
* for 200 names

* for 200

v L v Y v
.0 8
-
+0 L
*0 [&
+0 [
+a [L “
°
+0 L L
.0 L s
e0 {8 =
-
*+0 ® b
+0 L L
m.. +0 ° M
- b mm + 0 L X “
- . - '
* 0 ®
8§ f£2 m
-1 3 2 a +0 ® o
g bt
g §3 +a .
- e e
g - - 0 @ ¢+ 0 ® 9 ”
[] “-lcl
S 823 ¢+ @ .
m 2%13
2 ¢ o0 * O [
*]
'y 2 2 2 Y Y [J
e] * - - .
(89008) _Ow] JO88800.id BAUSD
il S T T e T

” ¥ ¥ v A v v LJ L v v

Ceatra) Processor Time
J + tota? -
¢ while searching datadase
0 while searching tfadex

o
Qe
[
oe
0
(K
0
'Y

Central Processor Time~ (secs)
L
4
[X 2
o ¢
[K 2

* °
- o
* -]
o *
) I)
)]
f.: 1
: i] |
£ Y
10 } N
s -
. ®
g o o
: ® 0 ¢ 0 0 0 ¢ 00 o 00 0 0 0 o
“,)" . g 2 2 3 a 92 e % " 'Y
o Record Block Size (# of records)
4 .
for 200 names

Figure B-10: Ceniral Processor Time ve. Record Block Size, Bulier Size 2048

)

[2]

i3]

(4]

(5

[}

L))

Bibliography

Al-Awar, J., Chapanis, A., and Ford, W.R.

Tutorials for the First-Time Computer User.

IEEE Transactions on Professional Communication PC-24:30-37, March,
1981.

Baker, J.D. and Goldstein, |.
Batch vs. Sequential Displays: Effects on Human Problem Solving.
Human Factors 8:225-235, 1968.

Benbasat, |., Dexter, A. S., and Masulis, P. S.
An Experimental Study of the Human/Computer Interface.
Communications of the ACM 24(11):752-762, November, 1981.

Bennett, John L.

The User Interface in Interactive Systems.

in Cuadra, C. A., editor, Annual Review of Information Science and
Technology, pages 159-188. ASIS, Washington, D.C., 1972,

Birrell, A. D., Levin R., Needham, R. M., and Schroeder, M. D.
Grapevine: An Exercise in Distributed Computing.
Communications of the ACM 25(4):260-274, April, 1662,

Black, John B., and Moran, Thomas P.

Learning and Remembering Command Names.

In Proceedings of the Human Factors in Computer Systems Conference,
pages 8-11. ACM, March, 1982,

Black, John B. and Sebrechts, Marc M.
Facilitating Human-Computer Communication.
Applied Psycholinguistics 2(2):148-177, 1981.

Borman, Lorraine and Karr, Rosemary.

Evaluating the Friendliness of a Timesharing System.
SIGSOC Bubetin 8-11, July, 1880,

Butler, T. W.

Computer Responee Time and User Performance.

in Proceedings of the Human Factors in Computing Systems Conference,
pages §6-62. ACM, December, 1063,

‘ .
JEDUES S S

S

Y . SPUA WA P

(o]

1]

(2]

3]

[14]

(18]

(6]

(17]

(18]

(19}

< i o A s iy

Davies, Donald W. and Yates, David M.

Human Factors in Display Terminal Procedures.

in Proceedings of the Fourth International Conference on Computer
Communication, pages 777-783. International Council for Computer
Communication, September, 1978.

Edwards, Allen L.
Techniques of Attitude Scale Construction.
Appleton-Century-Crofts, New York, 1957.

Edwards, Allen L.

A Technique for the Construction of Attitude Scales.

In Summers, Gene F., editor, Attitude Measurement, pages 214-221. Rand
McNally, Chicago, ll., 1970.

Edwards, Ward.
The Theory of Decision Making.
Psychological Bulletin 51(4):380-417, 1964.

Engel, Stephen E. and Granda, Richard E.
Guidelines for Man/Display Interfaces.
Technical Report 00.2720, IBM, April, 1975.

Frierson, Elanor and Atherton, Pauline.

Survey of Attitudes Towards SUPARS.

In Proceedings of the American Society for Information Science, pages 65-60.
ASIS, Greenwood, Westport, Conn., 1971.

Gaines, Brian R.
The Technology of Interaction -- Dialogue Programming Rules.
International Journal of Man-Machine Studies (14):133-150, 1981.

Gebhardt, Freidrich and Stelimacher, imant.
Design Criteria for Documentation Retrieval Languages.
Journal of the American Society for Information Science 20:191-190, 1978.

Good, Michael.

An Ease of Use Evaluation of an integrated Editor and Formatter.

Technical Report TR-208, M.I.T. Laboratory for Computer Science,
November, 1881.

Revised version of M.I.T. Master's Theesls

Granda, Richard E.

Man/Machine Design Guidelines for the Use of Screen Display Terminals.

In Proceedings of the Human Factors Society’s 24th Annual Meeting, pages
90-62. Human Factors Society, October, 1980,

Geept Tyl
i

A

S

e o0 e

- [N
. P PSR IR

b g e it)
. ,;;.~<:»,' - ooty

< e O

[20}

1]

[22]

[23]

[24]

[25]

[26)

(7]

[28)

{20}

Harivel, J.

Use of a Dedicated Machine Within the Eilectronic Directory Project.

in Parslow, R.D., editor, information Technology for the Eighties, pages
§20-545. British Computer Society, Heyden, London, UK, July, 1981.

Harrenstien, Ken and White, Vic.
NICNAME/WHOIS.
RFC 812, Network Information Center, SRI International, March, 1982.

Heise, David R.

The Semantic Differential and Attitude Research.

In Summers, Gene F., editor, Attitude Measurement, pages 235-253. Rand
McNally, Chicago, iil., 1970.

Hodge, M. H. and Pennington, F. M.
Some Studies of Word Abbreviation Behavior.
Journal ol Experimental Psychology 96(2):350-3681, 1973.

Hsu,F. S.
Design of a Human Interface for an Online Directory Assistance System.
Bachelor's thesis, M.|.T. Dept. of Elec. Eng. and Comp. Sci., May, 1983.

James, E.B.

The User interface: How May We Compute.

in Coombs, M. J. and Alty, J. L., editors, Computing Skills and the User
Interface, pages 337-371. Academic Press, New York, 1081.

Knuth, Donald E.
The Art of Computer Programming. Volume 3: Sorting and Searching.
Addison-Wesley, Reading, Mass., 1873,

Landweber, L., Litzkow, L., Neuhengen, D., and Solomon, M.

Architecture of the CSNET Name Server.

In Proceedings of the Sympesium on Data Communications, pages 148-183,
ACM SIGCOMM, March, 1983

Ledgard, Hervy, Singer, Andrew, and Whiteside, John.
Directions in Human Factors for interactive Systems.

Springer-Veriag, New York, 1981.

Likert, Renele.

A Technigque fior the Measurement of Mittudes.
Archives ol Psychology 22:1-88, 1000,

[30] Liskov, Barbara, et al. b
CLU Relerence Manual. :
Technical Report TR-225, M.I.T. Laboratory for Computer Science, October,

1979.

[31] Lucas,R.W.
A Study of Patients’ Attitudes To Computer Interrogation.
International Journal of Man-Machine Studies 9:69-86, 1977.

[32) Maguire, Martin.
An Evaluation of Published Recommendations on the Design of Man-
Computer Dialogues.
International Journal of Man-Machine Studies 16:237-261, 1982.

(33) Mann,J.
Decision Making.
The Free Press, New York, 1977.

[34] Miller, L. A. and Thomas, J. C.
Behavioral Issues in the Use of Interactive Systems.
International Journal of Man-Machine Studies 9(5).509-5386, 1977.

[35] Miller, Robert B.
Response Time in Man-Computer Conversational Transactions.
In Proceedings of the 1968 Joint Computer Conference, pages 267-277.
AFIPS, 1968.

- [38] Miller, Robert B.
- Human Ease of Use Criteria and Their Tradeoffs.
¢ Technical Report 00.2185, IBM, April, 1971.

‘- [37] Moran, Thomas P., editor.
g "Special Issue: The Psychology of Human-Computer Interaction.
! ACM Computing Surveys 13(1), March, 1881.

[38] Newman, Wiiliam M. and Sprouli, Robert F.
Principles of Interactive Computer Graphics.
McGraw-Hill, New York, 1972.

. (38] Norman, Donald A.

w Design Principles for Human-Computer interfaces.

- ? in Proceedings of the Human Factors in Computing Systems Conference,
pages 1-10. ACM, December, 1963.

A

104

[40])

[a1]

[42]

[43]

[44]

[45)

[46]

ok e ems s -

[47]

e . A

(48]

[49]

Oppen, Derek C. and Dalal, Yogen K.

The Clearinghouse: A Decentralized Agent for Locating Named Objects in a
Distributed Environment.

ACM Transactions on Office Information Systems 1(3):230-253, July, 1983.

Osgood, Charles E., Suci, George J., and Tannenbaum, Percy H.
The Measurement of Meaning.
University of lllinois Press, Urbana, lll., 1957.

Osgood, Charles E., Suci, George J., and Tannenbaum, Percy H.

Attitude Measurement.

In Summers, Gene F., editor, Attitude Measurement, pages 227-234. Rand
McNally, Chicago, lii., 1970.

Rayner, David.

Designing User Interfaces for Friendliness.

in Beech, David, editor, Command Language Directions. Proceedings of the
IFIP TC 2.7 Working Conference on Command Languages, pages
233-242. IFIP, North-Holland, New York, September, 1880.

Relles, Nathan and Price, Lynne A.

A User Interface for Online Assistance.

In Proceedings of the Fifth International Conference on Software Engineering,
pages 400-408. IEEE, March, 1981.

Roberts, Charles S.
Partial-Match Retrieval via the Method of Superimposed Codes.
Proceedings of the IEEE 67(12):1624-1642, December, 1979.

Rouse, William B.
Systems Engineering Models of Human-Machine Interaction.
North Holland, New York, 1980.

Shneiderman, Ben.
Software Psychology.
Winthrop, Cambridge, Mass., 1980.

Solomon, M., Landweber, L., and Neuhengen, D.
The CSNET Name Server.
Computer Networks 6(3):161-172, July, 1982,

Sondheimer, Norman K. and Relles, Nathan.

Human Factors and User Assistance in Interactive Computing.

IEEE Transactions on Systems, Man, and Cybernetics SMC-12(2):102-107, ‘
March/April, 1962. P

108

[50]

(51]

[52]

(53]

[54]

[55]

(56]

Spiliotopoulos, V. and Shackel, B.
Towards a Computer interview Acceptable to the Naive User.
International Journal of Man-Machine Studies 14:77-90, January, 1981.

Stallman, Richard M.
EMACS Manual for TWENEX Users.
Al Memo 555, M.I.T. Artificial Intelligence Laboratory, October, 1981.

Teorey, Toby, J. and Fry, James P.
Design of Database Structures.
Prentice-Hall, Englewood Cliffs, NJ, 1982.

Thurstone, L. L.

Attitudes Can Be Mew sured.

In Summers, Gene F., editor, Attitude Measurement, pages 127-141. Rand
McNally, Chicago, 1970.

Thurstone, L. L. and Chave, E. J.
The Measurement of Attitude.
University of Chicago Press, Chicago, Hl., 1929.

Wasserman, Anthony |.

User Software Engineering and the Design of Interactive Systems.

in Proceedings of the Fiith International Conference on Software Engineering,
pages 387-393. IEEE, March, 1981.

Williams, C. W.
System Response Time: A Study of Users’ Tolerance.
Technical Report 17-272, IBM, July, 1973.

108

'Y
<
-

OFFICIAL DISTRIBUTION LIST

1984

Director

Information Processing Techniques Office
Defense Advanced Research Projects Agency

1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research

800 North Quincy Street
Arlington, VA 22217

Attn: Dr. R. Grafton, Code 433

Director, Code 2627
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

National Science Foundation
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hooper, USNR
NAVDAC-OOH

Department of the Navy
Washington, DC 20374

12

Copies

Copies

Copies

Copies

Copies

Copy

Copy

